
 International Journal of Innovative Research in Engineering & Management (IJIREM)

ISSN: 2350-0557, Volume-7, Issue-4, July 2020

www.ijirem.org

Copyright © 2020. Innovative Research Publications. All Rights Reserved 38

 Analysis of Raft Consensus Algorithm

T. Srajan Kumar
Department of CSE,

JNTUH/Vignan Institute of

Management and Technology for
Women, Hyderabad, India

teralasrajankumar@gmail.com

V. Indrani
Department of CSE,

JNTUH/Vignan Institute of

Management and Technology for
Women, Hyderabad, India

D. Swaroopa
Department of CSE,

JNTUH/Vignan Institute of

Management and Technology for
Women, Hyderabad, India

ABSTRACT
Raft Consensus is an algorithm designed as an update to paxos.

It was proposed in a way such that it is more understandable
than paxos by means of separation of states, but it also formally
proven protected and carries some additional features. Raft
approach for distributed consensus by a leader in which cluster
has one and only elected leader which is fully responsible for
managing log value on the other servers of the cluster. It means
that the leader has privilege to decide on new entries placement
and establishment of data flow between it and the other servers

without consulting. Raft provides a universal way to share nodes
across a cluster of computing systems, ensuring that every node
in the cluster set upon the same series of transaction.

Keywords
Consensus, Data Communication, Distributed System, Paxos

1. INTRODUCTION
Raft is based upon consensus algorithm that is designed and
developed to make easy to understand and its equivalent to
paxos in fault-trace and performance. It is also formally proven

safe and offers some additional features in cluster of
nodes[1][2].

1.1 Data Communication
Data Communication is the process of transformation of data
using communication technologies .Scanty technologies used in
data communications are DCE [Data Communication

Equipment] used at sending node and DTE [Data Terminal
Equipment] used at the receiving node. Main agenda is to
transfer the data and maintenance of the data during the process
but here the actual information is not generated during the
process[3][4].

1.2 Cloud
A network of remote servers hosted on the internet and used to
store, manage, and process data in place of local servers or
personal computers[1].

1.3 Paxos
Paxos is a group of protocols for synchronizing the unreliable
machines. It is used for solving consensus in a network of
unreliable processors[1].

1.4 Consensus
It is a general agreement among a group of participants on their

results. Any number of nodes in the cluster environment can be
a leader so it has some degree of set value. Consensus means
several servers approves on same information[10].

Limitations
Some types of paxos algorithm exist that address this bottle
neck. As it is a strictly single leader protocol. Too much traffic

can drown the system

1.5 DISTRIBUTED SYSTEM
It consists of independent computers that are connected through
a distributed middleware. The connected system helps in sharing
different resources and services capabilities to provide users
with single and multilevel coherent network systems[5][6].

Advantages
 Here it consists of multiple servers when one server failed it

runs through other servers.

 As to make them easily understand they are breakdown into

subprograms which can work on relatively independent.

2. RAFT CONSENSUS ALGORITHM
Raft consensus algorithm works in broadly 2 stages:

2.1 Leader Election
As a leader as authority to maintain the clusters, the heartbeat of
leader is send to follower nodes .It will consider when there is
time legitimate while waiting for a response in a way of
heartbeats from a leader. The node changes the state in to
candidate state and issues request to Remote Procedure Call[9].
It undergoes in three ways:

 By receiving the high number of vote values from the

cluster nodes, the candidate node will becomes the leader.
At the time goes, other servers of the new Leader get
initiates by receiving the heartbeats from their leader[9].

 The candidate who participate in the leader election and

didn’t receive the high number of votes in the election
returns to the follower state[9].

 If the other candidate’s nodes receive the votes minor than

the leader then they retain the candidate status through the
Remote Procedure Call as rejected to the remaining cluster
nodes[9].

Analysis of Raft Consensus Algorithm

Copyright © 2020. Innovative Research Publications. All Rights Reserved 39

2.2 Log Replication
The scope of client is restrict making only write requests for
better understanding of beginner level audience. The log's of the
leader is reproduce or exact copy to other nodes (Followers)
immediately after these logs are filled with request from the
clients[11]. Typically, a log access contains the following:

• The command value specified by the client to execute
• Identify the position of entry in the log of the node.
• The entry time of the command.

 The current leader entries are synchronized with their logs to
all other services by the leader node. Until the client replicates to
the user. The client request for their entries to their leaders.
 The several numbers of servers in the cluster environment
successfully copies the new entries in their log’s place, it is

considered to be committed state. After the entry is committed
state, then the leader will executes the entry and responds back
with the result from the client. It should be noted that these
entries are executed in the process they are received in order. So
this state is called as entry committed algorithm[10].

Advantages
 The procedure of leader election is to gain the several

numbers of votes within maximum of 2 terms.

 The remote procedure calls RPC to process the votes and
synchronies up the cluster environment using Append

Entries. So, the load does not fall on the leader node in the
cluster environment.

 It is made to promote and to overcome the time and

complexity from the paxos algorithm and other analogous
protocol.

3. ANALYSIS OF RAFT ALGORITHM
To make the decision final it includes multiple servers

 Server has a state machine and log to get the result. And the
consensus is originated from clone state machines.

 The several state machines process the same series of

commands and thus produce the same series of result set[8].

 The consensus protocol failures bear countenance:

i. Validity
ii. Agreement

iii. Termination
iv. Integrity

Consensus has a multiple server system

Fig (a) :Multiple Server System in Consensus

a) In the above fig. Multiple servers preserve similar data
and interaction between the client and the system.

b) It utilizes the terms following as:
i. Server ii. Client

 The above system shown below as in the following way:

Fig (b) :.Multiple Server System Using Raft Visual

3.1 Consistency
 The data cannot be varied or missed after the processing is done
in the leader or follower’s

3.2 Availability
 It responds to every request made by the client in order to get
the response.

3.3 Partition Tolerance
If the one of the server fails also it remains to be active by the
other servers.

4. CONCLUSION
Paxos role in consensus in a network of unreliable processors
where as Raft consensus algorithm approach for distributed
consensus by a leader in which cluster has one and only elected
leader which is fully responsible for managing log value on the
other servers of the cluster.

REFERENCES

[1] Bolosky, W. J., Bradshaw, D., Haagens, R. B., Kusters, N.
P., and LI, P .Paxos Replicated State Machines as the Basis
of a High-Performance Data Store. In Proc. NSDI’11,
USENIX Conference on Networked Systems Design and
Implementation (2011), USENIX, pp. 141–154.

[2] Burrows, M. The Chubby lock service for loosely coupled
distributed systems. In Proc. OSDI’06, Symposium on

Operating Systems Design and Implementation (2006),
USENIX, pp. 335–350.

[3] Camargos, L. J., schmidt, R. M., and pedone,
F.Multicoordinated Paxos.

[4] In Proc. PODC’07, ACM Symposium on Principles of
Distributed Computing (2007), ACM, pp. 316–317.
Chandra, T. D., Griesemer, R., and Redstone, J. Poxos made
live: an engineering perspective. In Proc. PODC’07, ACM

Symposium on Principles of Distributed Computing (2007),
ACM, pp. 398–407.

[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A.,B, M., Chandra, T., Fikes, A., and Gruber, R. E. Big
table: a Distributed Storage System for Structured Data. In

Client Server

Server Server

Server

Server

 International Journal of Innovative Research in Engineering & Management (IJIREM)

ISSN: 2350-0557, Volume-7, Issue-4, July 2020

www.ijirem.org

Copyright © 2020. Innovative Research Publications. All Rights Reserved 40

Proc. OSDI’06, USENIX Symposium on Operating Systems
Design and Implementation (2006), USENIX, pp. 205–218.

[6] Corbett, J. C., dean, J., Epstein, M., Fikes, A., Frost, C.,
Furman, J. J., Ghemawat, S., Gubarev, A., Heiser, C.,

Hochschild, P., Hsieh, W., KKanthak, S., Kogan, E., Li, H.,
Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S.,
Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor, C.,
Wang, R., and Woodford, D. Spanner: Google’s Globally-
distributed database. In Proc. OSDI’12, USENIX
Conference on Operating Systems Design and
Implementation (2012), USENIX, pp. 251–264.

[7] Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google

file system. In Proc. SOSP’03, ACM Symposium on
Operating Systems Principles (2003), ACM, pp. 29–43.

[8] Gray, C., and Cheriton, D. Leases: An efficient fault tolerant
mechanism for distributed file cache consistency. In
Proceedings of the 12th ACM symposium on Operating
Systems Principles (1989), pp. 202–210.

[9] Lamport, L. Time, clocks, and the ordering of events in a
distributed system. Commununications of the ACM 21, 7
(July 1978), 558–565.

[10] Lampson, B. W. How to build a highly available system
using consensus. In Distributed Algorithms, O. Baboaglu
and K. Marzullo, Eds. Springer-Verlag, 1996, pp. 1–17.

[11] Lampson, B. W. The ABCD’s of Paxos. In Proc. PODC’01,
ACM Symposium on Principles of Distributed Computing
(2001), ACM, pp.13–13.

