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ABSTRACT- This paper explores the application of 

machine learning models, specifically XGBoost, Stacking 

Regressor, and Long Short-Term Memory (LSTM), for 

predicting earthquake magnitudes in Düzce, Turkey. The 

models were trained and tested on seismic data to predict 

moment magnitude (Mw). The performance of each model 

was evaluated using Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and the coefficient of 

determination (R²). The results indicate that the XGBoost 

model outperforms the other models with a higher R² value 

and lower error metrics, providing a more accurate 

prediction of seismic events. 

KEYWORDS- Earthquake Prediction, LSTM, Machine 

Learning, Seismic Data, Stacking Regressor, XGBoost.  

I. INTRODUCTION 

Earthquakes rank among the most catastrophic natural 

disasters, characterized by sudden occurrences that often 

leave little time for precautionary measures. The ability to 
accurately predict seismic events, particularly their 

magnitude, is crucial for minimizing casualties and 

infrastructure damage. Traditional methods of earthquake 

prediction have relied on observable phenomena such as 

radon emissions from wells, changes in seismic wave 

velocity, or electromagnetic precursors [1] [3]. However, 

these approaches have often been limited by high false 

alarm rates and an inability to fully account for the 

complexity and non-linearity of seismic data [4], [5]. 

Over the past decade, machine learning (ML) has emerged 

as a promising alternative to these traditional techniques. 

ML-based methods, which include algorithms such as 
gradient boosting, deep learning, and neural networks, excel 

at identifying patterns within large datasets that might 

otherwise be overlooked by conventional models [6] [8]. 

For instance, ML techniques have been applied successfully 

in earthquake prediction by utilizing time-series data to 

model the relationships between different seismic indicators 

[9], [10]. Among the more recent ML models, XGBoost 

and Long Short-Term Memory (LSTM) networks have 

gained attention due to their ability to handle both 

structured and sequential data, making them ideal for 

predicting complex natural phenomena like earthquakes [6], 
[11]. 

Effective earthquake prediction must account for a wide 

range of variables, including magnitude, location, and time 

of occurrence. Past research has shown that these variables 

are highly stochastic and interdependent, requiring 

advanced computational techniques to predict them with 
accuracy [12]. As a result, machine learning models such as 

XGBoost, which employ gradient boosting to progressively 

refine its predictions, and LSTM, designed to capture 

extended dependencies in time-series data, have become 

increasingly favored in seismic research [13] [14]. These 

models can also be combined in ensemble learning methods 

like the Stacking Regressor, which integrates multiple base 

learners to enhance prediction accuracy [15] [16]. 

Despite significant advancements, earthquake prediction 

remains a challenge due to the inherent uncertainty and 

complexity of seismic events. Many studies continue to 
focus on improving the accuracy and reliability of 

prediction models, recognizing that even small 

improvements can have a substantial impact on disaster 

preparedness [7] [17]. This study aims to advance these 

efforts by evaluating the performance of three machine 

learning models—XGBoost, Stacking Regressor, and 

LSTM—in forecasting earthquake magnitudes in Düzce, 

Turkey, a region with a history of significant seismic 

activity [18]. By evaluating these models, we aim to 

identify the most effective approach for real-time 

earthquake prediction and provide insights that could 
enhance early warning systems and mitigate future disasters 

[8] [19]. 

II.  RELATED WORK 

Machine learning (ML) and deep learning (DL) have been 

widely adopted across various domains, including health 

and energy. These advanced computational techniques 

leverage large datasets and sophisticated algorithms to 

uncover patterns, make predictions, and enhance decision-

making processes. In health, ML algorithms assist in 
disease diagnosis and treatment planning, while in energy, 

they are employed for optimizing resource management and 

predicting demand fluctuations [20] [21]. 

Recent breakthroughs in machine learning (ML) and deep 

learning (DL) have revolutionized earthquake forecasting, 

providing a deeper understanding and more accurate 

predictions of when, where, and how strong seismic events 

might occur. Various studies have demonstrated promising 

improvements in prediction accuracy through the 

application of sophisticated algorithms and large datasets, 

https://doi.org/10.55524/ijirem.2024.11.5.10
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identifying patterns in seismic activity that traditional 

models often struggle to detect. 

Various ML techniques were explored for predicting large 

earthquakes in the North Zagros region, a highly active 

seismic zone, in  [22]. In their study, three ML methods—
Artificial Neural Networks (ANN), Random Forest (RF), 

and Support Vector Machines (SVM)—were applied using 

nine seismic parameters. The ANN model showed superior 

performance in forecasting larger magnitude earthquakes. 

The research highlights the importance of utilizing detailed 

seismic datasets alongside statistical measures, including 

recall, accuracy, and precision. By incorporating these 

metrics, along with the F1-score, prediction accuracy is 

enhanced, offering promising advancements for managing 

crises in regions susceptible to earthquakes. 

Study [23] implemented advanced deep learning 

methodologies, featuring Long Short-Term Memory 
(LSTM), Bi-directional Long Short-Term Memory (Bi-

LSTM), and transformer models, to predict earthquake 

magnitudes across diverse regions, including Japan, 

Indonesia, and the Hindu-Kush Karakoram (HKKH) area. 

The evaluation of the models was conducted using metrics 

such as Mean Absolute Error (MAE) and Mean Squared 

Error (MSE), revealing that the LSTM model achieved the 

highest performance for the dataset from Japan. This 

research shows that deep learning models, especially those 

that utilize self-attention mechanisms such as transformers, 

offer strong predictive abilities for earthquake magnitudes 
between 3.5 M and 6.0 M, highlighting the adaptability of 

these approaches across various seismic regions. 

The effectiveness of recurrent neural networks (RNNs) for 

earthquake prediction was explored in the study conducted 

by [18], which concentrated on forecasting seismic events 

specifically in the Düzce Province of Turkey. This study 

highlighted the significance of additional geological factors, 

such as the b and d values of earthquakes and the distance 

between the Moon and Earth, in improving prediction 

accuracy. By employing RNNs for time-series data 

analysis, the research illustrated the potential for enhanced 

classification of seismic data and improved forecasting 
precision. 

Furthermore, [24] applied transformer-based models to 

predict earthquake magnitudes in the Horn of Africa, 

framing the problem as a multivariate time-series regression 

task. A comparison of results with LSTM, Bi-LSTM, and 

Bi-LSTM with attention models revealed that the 

transformer algorithm outperformed all others, achieving 

lower errors in metrics such as MAE, MSE, and RMSE. 

This work underscores the growing relevance of 

transformer models in seismic prediction due to their 

capability to process complex time-series data effectively. 
Moreover, the research conducted by [25] examined a range 

of both traditional and modern machine learning 

algorithms, such as Shallow Neural Networks (SNNs), 

Support Vector Machines (SVMs), Decision Trees (DTs), 

and Deep Neural Networks (DNNs), to predict significant 

upcoming earthquakes in Iran. Their research presented a 

novel parameter, fault density, which greatly enhanced the 

predictive accuracy of the models. This finding highlights 

the critical need to incorporate new seismic parameters into 

established models to boost their reliability. 

Additionally, [26] employed RNNs, LSTM, and Gated 
Recurrent Units (GRU) to anticipate earthquake-induced 

dynamic slope reactions, achieving a normalized error of 

less than ±5%. Their findings illustrate the effectiveness of 

recurrent models in handling sequential seismic data and 

improving prediction accuracy when compared to 

conventional methods. This is consistent with the work of  

[27], where a CNN model was created to predict 
earthquakes in northeast India, illustrating that CNNs can 

make meaningful contributions to earthquake forecasting 

when adapted to the unique characteristics of specific 

regions. 

There is also a growing interest in hybrid models that 

combine multiple ML techniques to improve prediction 

accuracy. Notably, ensemble approaches like the Stacking 

Regressor have been applied successfully in earthquake 

prediction tasks [25], offering a method to enhance the 

robustness of predictions by leveraging the complementary 

strengths of various models.  

Building on recent advancements in earthquake prediction 
methodologies, this study aims to evaluate the performance 

of three machine learning models—XGBoost, Stacking 

Regressor, and LSTM—in predicting earthquake 

magnitudes within the seismically active region of Düzce, 

Turkey. These models were selected for their respective 

strengths in handling complex datasets, forecasting time 

series, and combining predictions from multiple models. 

XGBoost was chosen for its robustness in managing non-

linear data with high variance, as well as its capacity to 

offer interpretability through feature importance. LSTM, 

well-suited for time-series forecasting, aligns with the 
sequential nature of earthquake occurrences. Stacking 

Regressor, by integrating the predictions of multiple base 

models, captures more intricate relationships within the data 

that may not be fully captured by individual models alone. 

Other models, such as Support Vector Machines (SVM) and 

Artificial Neural Networks (ANN), were initially 

considered but were ultimately excluded due to their 

relatively higher computational demands and lower 

performance in preliminary tests with the Düzce dataset. 

Although SVM has demonstrated effectiveness in 

classification tasks, its performance tends to diminish in 

large-scale regression problems involving highly variable 
seismic data. By comparing these models, this research 

contributes to the growing body of literature on machine 

learning-based seismic forecasting, with the goal of 

identifying the most reliable approach for real-time 

earthquake magnitude prediction.  

III. METHODOLOGY 

A. Data Collection 

The seismic dataset utilized in this study encompasses a 

comprehensive collection of historical earthquake data 

specifically for the Düzce region of Turkey, covering an 

extensive time span from 1905 to 2024. This dataset is vital 

for understanding the seismic activity and potential risks 

associated with earthquakes in this area, which is known for 

its tectonic significance due to the presence of major fault 

lines. The data was sourced from the Boğaziçi University 

Kandilli Observatory and Earthquake Research Institute 

Regional Earthquake-Tsunami Monitoring and Evaluation 

Center, and it can be accessed through the following link: 

http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/. 

The dataset comprises several key attributes essential for 

analyzing seismic events. These attributes include the date 

http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/
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of the earthquake formatted as Year/Month/Day, the time of 

occurrence specified in Coordinated Universal Time 

(UTC+3), and geospatial coordinates denoting the latitude 

and longitude for each seismic event. Additionally, it 

records the depth of the earthquake in kilometers, alongside 

multiple magnitude readings: MD (Magnitude Derived), 

ML (Local Magnitude), Mw (Moment Magnitude), Ms 

(Surface Wave Magnitude), and Mb (Body Wave 

Magnitude). Each entry in the dataset is uniquely identified 

by an ID, facilitating precise tracking and analysis of 

seismic events. 

In seismology, various magnitude scales are used to 

measure the size of an earthquake. The Moment Magnitude 

(Mw) scale is the most commonly used today, as it provides 

a more accurate measure of earthquake energy release 

compared to older scales like the Richter or Local 

Magnitude (ML) scales. Mw is particularly effective for 

large quakes, as it accounts for fault slippage and rupture 

length. Other magnitudes, such as MD (Duration 

Magnitude) and MS (Surface-wave Magnitude), are also 

used in specific cases depending on the depth and location 

of the earthquake. Understanding these magnitude scales is 

crucial for accurately predicting and analyzing seismic 

events. 

The inclusion of multiple magnitude scales allows for a 

more nuanced understanding of the earthquakes, as different 

scales may yield varying estimates of the earthquake's size 

depending on the distance from the seismic station and the 

geological conditions. This multifaceted approach enriches 

the dataset, enabling a thorough exploration of the 

relationships between different magnitude measures and 

their implications for seismic risk assessment. 

Prior to analysis, the dataset underwent a rigorous 

preprocessing phase. This step was crucial to ensure data 

uniformity and reliability, as it involved cleaning the data to 

eliminate any anomalies or noise that could skew the 

results. The preprocessing steps included standardization of 

units, handling missing values, and normalization of data 

where necessary. By establishing a clean and consistent 

dataset, the study aimed to enhance the predictive accuracy 

of the machine learning models employed in the analysis. 

In summary, this meticulously curated dataset serves as the 

foundation for the predictive modeling of earthquake 

magnitudes in the Düzce region, leveraging both historical 

insights and robust preprocessing techniques to inform and 

enhance the machine learning methodologies applied in this 

research.  

B. Machine Learning Models 

The study employs three distinct machine learning models 

to predict earthquake magnitudes, each selected for its 

unique strengths in handling the complexities of seismic 

data. 

XGBoost: XGBoost is an ensemble-based gradient 

boosting algorithm that has gained significant recognition 

for its remarkable accuracy and efficiency, particularly 

when processing large and complex datasets. This model 

operates by iteratively enhancing the performance of weak 

learners, which allows it to effectively identify intricate 

patterns within seismic data. Its ability to minimize errors 

through continuous refinement makes XGBoost particularly 

suitable for predicting earthquake magnitudes, where the 

underlying relationships can be complex and non-linear.  

 Stacking Regressor: The Stacking Regressor is a 
sophisticated meta-learning technique that combines 

predictions from multiple base models, in this case 

various regression algorithms, to produce a consolidated 

final prediction. This method capitalizes on the strengths 

of individual models, allowing for improved predictive 

performance. By integrating the outputs of diverse 

algorithms, the Stacking Regressor can capture a wider 

range of patterns in the data, thereby enhancing the 

overall robustness and accuracy of the earthquake 
magnitude predictions.  

 LSTM (Long Short-Term Memory): Long Short-Term 

Memory networks represent a specialized class of 

recurrent neural networks (RNNs) tailored for the 

analysis of time-series data. LSTM architectures are 

particularly adept at capturing long-term dependencies, 

making them invaluable for seismic predictions where 

historical events significantly influence future seismic 

activity. By maintaining information over extended 

periods, LSTMs can discern patterns and trends in 

seismic data that traditional models may overlook, thus 

providing a more nuanced understanding of earthquake 
behavior.  

XGBoost, a boosting algorithm, creates an ensemble of 

decision trees to enhance prediction accuracy. By iteratively 

correcting errors from previous trees, XGBoost delivers 

highly accurate predictions, making it ideal for handling 

complex, non-linear relationships in seismic data. LSTM, a 

type of recurrent neural network (RNN), is specialized for 

time-series forecasting, allowing the model to remember 

past information for better future predictions. Lastly, 

Stacking Regressor combines predictions from multiple 

models to form a stronger meta-model, thus improving the 

overall accuracy by leveraging the strengths of each 

individual model. 

Trained on seismic data, these models predict moment 

magnitudes based on past earthquake events. This approach 

helps identify patterns that might not be apparent through 

traditional statistical methods. By using machine learning, 

we aim to create a more accurate predictive model for 

earthquake magnitude forecasting. 

C. Performance Metrics 

The performance of the machine learning models was 

rigorously evaluated using a set of quantitative metrics 

designed to provide a comprehensive assessment of 

prediction accuracy and reliability. The chosen metrics are 

as follows: 

 Mean Absolute Error (MAE): This metric quantifies 

the average magnitude of the errors between predicted 

and actual values, offering a clear and interpretable 

measure of model performance. By calculating the 

absolute differences and averaging them, MAE provides 

insight into the overall accuracy of the predictions, 

making it a valuable tool for understanding how closely 

the model's outputs align with observed seismic events.  

 Root Mean Square Error (RMSE): RMSE serves as a 

robust indicator of prediction accuracy by emphasizing 



 
International Journal of Innovative Research In Engineering and Management (IJIREM) 

 

Innovative Research Publication   76 

 

larger errors. This is accomplished by squaring the 

residuals (the discrepancies between predicted and 

actual values), which imposes a greater penalty on 

larger deviations. This characteristic makes RMSE 

particularly useful in contexts where large prediction 
errors are especially detrimental, as it highlights areas 
where the model may require further refinement.  

 R² (Coefficient of Determination): The R² value 

represents the fraction of variance in the from 0 to 1, 

where higher values suggest a stronger correlation 

between the model and the actual data. This metric is 

instrumental in evaluating the effectiveness of the model 

in capturing the underlying relationships in the data, 

providing a quantitative measure of the model's 

explanatory powertarget variable that the model can 
account for. It spans.  

By employing these metrics, the study not only assesses the 

accuracy of the predictions but also gains insights into the 

strengths and weaknesses of each model. This multifaceted 

evaluation approach is crucial for understanding how well 

each machine learning technique performs in the context of 

earthquake magnitude prediction, ultimately guiding future 

improvements in predictive modeling efforts. 

IV. RESULTS AND DISCUSSION 

The performance of the machine learning models was 

systematically evaluated based on three key metrics: Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), 

and the Coefficient of Determination (R²). Table 1 presents 

a summary of the results obtained for each model. 

numerals. 

Table 1: Performance Metrics of Machine Learning Models 

for Earthquake Magnitude Prediction 

Model MAE RMSE R2 

XGBoost 0.0428 0.3194 0.8400 

Stacking Regressor 0.0532 0.4168 0.7276 

LSTM 0.1132 0.4393 0.6974 

The XGBoost model demonstrated superior performance 

across all evaluated metrics, achieving the lowest MAE 

(0.0428) and RMSE (0.3194), alongside the highest R² 

value (0.8400). This indicates that XGBoost provides the 

most reliable and accurate predictions of earthquake 

magnitudes within the context of this study. In contrast, the 

Stacking Regressor exhibited moderate performance, with 

higher error rates compared to XGBoost. The LSTM model, 

while useful for capturing temporal dependencies, showed 

the highest error metrics and the lowest R² score (0.6974), 

positioning it as the least effective model for predicting 
earthquake magnitudes in this dataset. 

While LSTM models are typically powerful for sequential 

data, the performance in this case was hindered by the 

relatively limited size of the dataset and the high variance in 

earthquake magnitudes. LSTM's sensitivity to the length of 

sequences and the need for large training data makes it 

more prone to overfitting when fewer data points are 

available. Additionally, LSTM models may struggle with 

datasets that have strong temporal dependencies but 

relatively sparse features, which can lead to increased MAE 
and RMSE values. In future work, applying techniques such 

as data augmentation, more advanced regularization 

methods, or integrating external datasets could potentially 

improve LSTM’s performance.  

The models used in this study, particularly XGBoost, have 

the potential to be integrated into real-time earthquake early 

warning systems. By continuously analyzing seismic data in 

real-time, such models could provide early predictions of 

earthquake magnitudes, allowing for timely warnings and 

mitigation efforts. This integration would be especially 

beneficial in seismically active regions like Turkey, where 

rapid response is critical to minimizing damage. Moreover, 
the methodologies used in this study could be adapted for 

other earthquake-prone regions, such as the Pacific Ring of 

Fire, to enhance global earthquake preparedness and risk 

management efforts. 

A. Prediction Accuracy 

Table 2 illustrates a comparison of true earthquake 

magnitudes (Mw) against the predictions made by the three 

models. This comparison is essential for understanding the 

practical implications of the model performances. 

Table 2: Comparison of True Earthquake Magnitudes and 

Model Predictions 

True 

Mw 

XGBoost 

Predictions 

Stacking 

Predictions 

LSTM 

Predictions 

0 5.2879E-06 3.9708E-06 -0.0110 

3.3 3.3979 3.3565 2.8097 

7.2 6.3330 2.9929 2.8788 

The XGBoost model consistently yielded predictions that 

were significantly closer to the true Mw values across the 

board. Notably, for larger magnitude events, such as Mw 

7.2, the XGBoost prediction (6.3330) was the most 

accurate, while the Stacking Regressor and LSTM models 

considerably underestimated this magnitude. This 
discrepancy underscores the importance of model selection 

in the context of seismic prediction, as accurate forecasts 

are crucial for risk assessment and mitigation strategies in 

earthquake-prone regions. 

B. Visualizing Prediction Results 

In this section, we present several visualizations that 
illustrate the performance of the different machine learning 

models used in our study. 

Figure 1 illustrates a correlation matrix the relationships 

between various features used in the models. This matrix 

helps identify which seismic parameters are strongly 

correlated with earthquake magnitudes, potentially guiding 

future model improvements. 
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Figure 1: Correlation matrix 

Figure 2 illustrates the XGBoost model's predictions, 

showcasing its performance in predicting earthquake 

magnitudes. The alignment of predicted and actual values is 

critical for assessing the model's reliability, as it 

demonstrates the model's capability in accurately 

forecasting seismic events.  

 

Figure 2: XGBoost vs. Magnitude 

Figure 3 presents the predictions made by the stacking 

regressor model. By comparing these predictions with the 

actual magnitudes, we can evaluate the stacking regressor's 

overall prediction capabilities and its effectiveness in 

handling complex relationships within the seismic data.  
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Figure 3: Stacking Regressor vs. Magnitude 

Figure 4 compares the predicted magnitudes from the Long 

Short-Term Memory (LSTM) model against the actual 

magnitudes. Observing the distribution of predicted values 

in relation to the actual values provides insights into the 

LSTM model's effectiveness, highlighting its strengths and 

potential areas for improvement in earthquake magnitude 

forecasting.  

 

Figure 4: LSTM vs. Magnitude 
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Figure 5 displays the relationship between the actual 

earthquake magnitudes and the predicted values generated 

by our models. This comparison is crucial for assessing the 

overall performance of the models, as it visually represents 

how closely the predicted values align with the actual 

magnitudes, thereby indicating the accuracy and reliability 

of the forecasting methods employed.  

 

Figure 5: Model predictions comparison 

Figure 6 illustrates the accuracy comparison of the 

XGBoost, Stacking Regressor, and LSTM models, 
showcasing their respective predictive performances. A 

higher accuracy percentage indicates greater effectiveness 

in forecasting earthquake magnitudes, underscoring the 

strengths of each model. This visual representation 

facilitates a clear understanding of how well each model 
performs in capturing the underlying patterns in seismic 

data, allowing for an informed assessment of which 

approach may be more suitable for real-time predictions. 

 

Figure 6: Model accuracy 

Figure 7 presents the confusion matrix heatmap, providing a 

visual representation of the performance of our 

classification models. This matrix allows us to evaluate how 

well the model can distinguish between different classes of 

earthquake magnitudes. Each cell in the matrix represents 

the number of instances predicted in each category 

compared to the actual categories, offering insights into the 

model's classification accuracy and identifying areas where 

improvements may be needed.  
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Figure 7: Confusion matrix heatmap 

Figure 8 illustrates the feature importance chart, 
highlighting the significance of each input feature in 

contributing to the model's predictions. By evaluating the 

relative importance of various features, we gain insights 

into which factors are most influential in predicting 

earthquake magnitudes. This analysis not only helps in 
understanding the models’ decision-making processes but 

also guides future data collection efforts by identifying key 

variables that warrant further exploration in seismic 

forecasting.  

 

Figure 8: Feature importance 

Figure 9 presents the F1 Score chart categorized by 

earthquake magnitudes, offering an in-depth analysis of the 

models' effectiveness across various levels of seismic 
activity. The F1 score, being the harmonic mean of 

precision and recall, provides a balanced measure of a 

model's accuracy in classification tasks, particularly when 

addressing imbalanced datasets. In this analysis, the F1 

score is calculated for each category of earthquake 

magnitudes, allowing us to evaluate how well the models 

predict events within specific ranges. Elevated F1 scores 
indicate that the models successfully recognize true positive 

cases while effectively minimizing the occurrence of false 

positives and false negatives, thereby enhancing the 

reliability of predictions in critical seismic scenarios. 
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Figure 9: F1 Score by magnitude category 

V. CONCLUSION 

This study highlights the significant potential of machine 

learning models, particularly the XGBoost algorithm, in 

predicting earthquake magnitudes in the Düzce region of 

Turkey. The results indicate that while all models 

demonstrated reasonable predictive capabilities, XGBoost 

exhibited superior performance compared to the Stacking 

Regressor and LSTM models. Its ability to handle the 

complex patterns inherent in seismic data underscores its 
robustness and effectiveness in this application. 

Looking ahead, future research will aim to enhance model 

accuracy by incorporating a broader range of seismic and 

environmental variables. Extending this study to other 

earthquake-prone regions will also provide valuable 

insights and improve generalizability. Furthermore, the 

integration of these predictive models into real-time 

prediction and early warning systems holds great promise 

for mitigating earthquake-related damage and improving 

public safety. 

In conclusion, this study demonstrates the efficacy of 

machine learning models, particularly XGBoost, in 
predicting earthquake magnitudes. However, future 

research should focus on integrating additional features, 

such as soil composition and aftershock sequences, which 

could further enhance prediction accuracy. Moreover, 

applying transfer learning techniques across different 

tectonic regions could provide a more generalized model for 

global earthquake prediction. The potential for real-time 

application in early warning systems highlights the practical 

significance of this research, with the ultimate goal of 

reducing the impact of seismic events on vulnerable 

populations. 
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