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ABSTRACT 
     This paper proposes a solution method for three level 
programming (TLP) problem with interval coefficients in both of 
objective functions and constraints. This method uses the concepts 
of tolerance membership function at each level to develop a fuzzy 
Max–Min decision model for generating Pareto optimal 
(satisfactory) solution. The first level decision maker (FLDM) 
specifies his/her objective functions and decisions with possible 
tolerances. Then, the second level decision-maker (SLDM) 
specifies his/her objective functions and decisions, in the view of 
the FLDM, with possible. Finally, the third level decision-maker 
(TLDM) uses the preference information for the FLDM and 
SLDM to solve his/her problem subject to the two upper level 
decision-makers restrictions. An illustrative numerical example is 
provided to clarify the proposed approach. 
 
Keywords: Multi-level programming, interval coefficients, 
fuzzy programming. 
 
1. INTRODUCTION 
     Three-level programming (TLP) problem is a class of multi-
level programming (MLP) problem in which there are three 
independent decision makers [3, 5, 14, 16]. Each DM attempts to 
optimize its objective function and is affected by the actions of the 
others decision makers. TLP problem, whether from the stand 
point of the three-planner Stackelberg behavior or from the 
interactive organizational behavior, is a very practical problem 
and encountered frequently in actual practice. 
     Several approaches have been used widely in searching for the 
optimal solutions of three level programming problems. The 
hybrid extreme-point search algorithm [4, 7], mixed-integer 
problem with complementary slackness [7], and the penalty 
function approach [2, 7]. Apart from these approaches, fuzzy sets 
have been employed to formulate and solve three-level non-linear 
multi-objective decision-making [12]. A multi-level linear 
programming problem with random rough coefficients in 
objective functions was presented by Emam et al [6]. 
     In traditional mathematical programming, the coefficients of 
the problems are always treated as deterministic values. However 
in practice, it is very common for the coefficients values to be 
only approximately known. Hence, in order to develop good 
Operations Research methodology, fuzzy and stochastic 
approaches are frequently used to describe and treat uncertain 
elements present in a real decision problem. In fuzzy 

programming, the constraints and goals are viewed as fuzzy sets 
and it is assumed that their membership functions are known. On 
the other hand, in stochastic programming, the coefficients are 
viewed as random variables and it is also assumed that their 
probability distributions are known. These membership functions 
and probability distributions play important roles in their 
corresponding methods. However, it is sometimes difficult to 
specify an appropriate membership function or accurate 
probability distribution in an uncertain environment. To overcome 
these difficulties, interval programming approaches [9] have 
appeared as a prominent tool for solving decision problems with 
interval parameter values. In interval programming the bounds of 
the uncertain coefficients are only required. The methodological 
aspects of interval programming studied in the past have been 
surveyed by Olivera et al [11]. 
     The structure of this paper is organized as follows. Section 2 
presents the TLP problem with interval coefficients in both of the 
objective functions and constraints. Section 3 presents treatment 
procedure of the uncertainty of the problem. Fuzzy models for 
TLP problem are provided in section 4. A numerical example is 
provided in section 5 to clarify the proposed approach. Section 6 
contains the conclusion. 
  
2. THREE-LEVEL PROGRAMMING 
PROBLEM WITH INTERVAL 
COEFFICIENTS  
         The general form of TLP problem with interval coefficients 
in both of the objective functions and the constraints is as follows: 

  1 2 3
1

1 11 11 12 12 13 13max , , , ,L R L R L R

x
f x c c x c c x c c x            

                                                                               

                                                                                             (1) 

where 2 3,x x  solve: 
                

  1 2 3
2

2 21 21 22 22 23 23max , , , ,L R L R L R

x
f x c c x c c x c c x                                                                                           

                                                                                             (2) 

and 3x  solves: 
   1 2 3

3
3 31 31 32 32 33 33max , , , ,L R L R L R

x
f x c c x c c x c c x            

                                                                              

                                                                                            (3) 
subject to  
            

1 2 31 1 2 2 3 3, , ,   , 1, 2,...,L R L R L R
i i i i i i ia a x a a x a a x b i m                 
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                           (4)

 
           1 2 30,  0,  0x x x                     (5) 

where  1
1

1 2
1 1 1 1, ,...,  and nx x x x n  is the number of 

variables controlled by the first level. 

 2
2

1 2
2 2 2 2, ,...,  and nx x x x n  is the number of variables 

controlled by the second level. 

 2
3

1 2
3 3 3 3, ,...,  and nx x x x n  is the number of variables 

controlled by the third level.  1 2 3, ,x x x x  is the decision 

variables controlled by the decision maker on the three levels. 

1 2 3n n n n    and m is the number of constraints. 

,L R
i ia a    , for 1,...,i m and ,L Rc c    denote an 

interval numbers and they represent a bounded set of real numbers 
between the bounds. The superscripts L and R denote lower and 
upper bounds of an interval number respectively. 

3. TREATMENT PROCEDUOR  
     In this section we will treat the uncertainty in both of the 
objective functions and the constraints. 
 
3.1 Treatment of the uncertain objective 
function 
     In interval mathematics, the uncertain objective function with 
interval numbers can be transformed into two deterministic 
objective functions as follows (Jiang et al., 2008): 

                             1 1 1
1
2

L Rm f x f x f x  , 

                             1 1 1
1
2

R Lw f x f x f x  , 

where m is called the midpoint value and w is called the radius of 
the interval number. 

     The two functions  1
Lf x  and  1

Rf x  are given as 

follows: 
                                   1 1 1 1min ,    maxL Rf x f x f x f x     

     The linear combination method [8]  is adopted to deal with the 
multi objective optimization. The linear combination method 
guarantees obtainment finite number of Pareto solutions. So it is 
appropriate for this type of problems, then we get: 

                                    1 1 1 2 1f x d m f x d w f x  , 

                                             1 2 1 2, 0,    1d d d d    

And by the same way the objective functions of the second and 
third levels can be written as follows: 

                               2 3 2 4 2f x d m f x d w f x   

                                           3 4 3 4, 0,    1d d d d    

                              3 5 3 6 3f x d m f x d w f x   

                                          5 6 5 6, 0,    1d d d d    

where 1 2 3 4 5 6 , , , ,  and d d d d d d  are called weighting 
coefficients. 

3.2 Treatment of the uncertain constraints 
     The possibility degree of interval number represents certain 
degree that one interval number is larger or smaller than another. 
     Let    1 1 1 2 2 2 3 3 3, , ,L R L R L R

i i i i i i ig x a a x a a x a a x                

    According to Jiang et al. [10], the possibility degree can be 
defined as follows:  
                                   

 

0                   

    

1                  

L

L
L R

R L

R

b E

b E
b E E b E

E E
b E

P


 


   
 

 

where    ,L R
i iE g x g x    is the interval of the ith 

constraint function. 
        ib EP 


  is the possibility degree of the ith constraint 

where 0 1i  , 1, 2,...,i m  is a predetermined 
possibility degree level. 
     By applying the possibility degree definition, we can transform 
the uncertain form of constraints (4) into certain form as follows: 
                            

31 21 1 2 2 3 3, , ,
    , 

                              1,2,...,

i x x xL R L R L R
i i i i i i

ib a a a a a a

i m

P 
      
            

  



  

then 
             

   
1 2 3

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3

  ,  

                                                       1, 2,...,

L L L
i i i i

iR R R L L L
i i i i i i

b a x a x a x

a x a x a x a x a x a x

i m


  


    



 

                         0 1i   

3.3 The deterministic TLP problem 
     Now we have a deterministic form of TLP problem as follows 
                              

       
1

1 1 1 2 1max
x

f x d m f x d w f x                                           

                                                                               (6)  

where 2 3,x x  solve: 
                             

       
2

2 3 2 4 2max
x

f x d m f x d w f x                                             

                                                                               (7) 

and 3x  solves: 
                          

       
3

3 5 3 6 3max
x

f x d m f x d w f x                                                                                
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                                                                             (8) 
subject to 
               

   
1 2 3

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3

  ,      1, 2,...,
L L L

i i i i
iR R R L L L

i i i i i i

b a x a x a x
i m

a x a x a x a x a x a x


  
 

    

 

                                                                               (9) 

                        0 1i                                  (10) 

                     1 2 3 4 5 6 1 2, , , , , 0,    1d d d d d d d d  

3 4, 1,d d   5 6 1d d                            (11)            

      1 2 30,  0,  0x x x                        (12) 

     For some values of 1 2 3 4 5 6, , , , ,  and i d d d d d d we can 
treat problem (6) – (12) by using fuzzy programming. 

4. FUZZY MODELS FOR TLP PROBLEM 
     To solve the TLP problem one first gets the satisfactory 
solution that is acceptable to FLDM, and then gives decision 
variables and goals of the FLDM with some leeway to the SLDM 
for him/her to seek the satisfactory solution. Then give the 
decision variables and goals of the SLDM with some leeway to 
the TLDM for him/her to seek the satisfactory solution, and to 
arrive at the solution which is closest to the satisfactory solution 
of the FLDM. This due to, the TLDM who should not only 
optimize his/her objective functions but also try to satisfy the 
goals and preferences of SLDM as much as possible, SLDM also 
do the same action to satisfy the goals and preferences of FLDM 
as much as possible. 
     The TLP problem will be solved as a single objective problem 
considering one objective at a time and ignoring the rest.  
     By using the obtained solutions, we find the values of all 
objective functions at each solution and construct a payoff matrix 
as follows [15]:  
 

                                    

     
     
     
     

1 1 1
1

2 2 2 2

3
3 3 3

1 2 3

1 2 3

1 2 3

1 2 3

           
o o o

o

o o o o

o
o o o

f x f x f x

f x f x f xx

x f x f x f x

x f x f x f x

 
 
 
 
 
 
  

 

     The minimum and maximum of each column gives us lower 
bound and upper bound of each objective function then we have: 
                          

       1 1 1 1max  and minu lf x f x f x f x  ,                                                                              

                                                                                      (13) 
                         

       2 2 2 2max  and minu lf x f x f x f x  ,                                                                             

                                                                                       (14)    
                         

       3 3 3 3max  and minu lf x f x f x f x                                                                                

                                                                                        (15)  

     Equations (13), (14) and (15) will be used to build the 
membership functions of fuzzy set theory [13]. 
 
4.1. FLDM problem 
     By using (13) the following the membership functions of fuzzy 
set theory can be formulated: 

 

   
   
         

   

1

1 1

1 1
1 1 1 1

1 1

1 1

0                                        ,

       ,

1                                         .

l

l
l u

f u l

u

f x f x

f x f x
f x f x f x f x

f x f x

f x f x



 

       




                                                                             

                                                                            (16) 
     Now, we can get the solution of the FLDM problem by solving 
the following Tchebycheff problem [1, 7, 14]: 
                                max                               (17) 
subject to: 

                           1 1f f x                      (18) 

          
   

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3

  ,      1, 2,...,
L L L

i i i i
iR R R L L L

i i i i i i

b a x a x a x
i m

a x a x a x a x a x a x


  
 

    

                                                                             

(19) 
                     0 1i                                     (20) 

    1 2 1 2, 0,    1d d d d                           (21) 

     1 2 30,  0,  0x x x                         (22)              
   Whose solutions are assumed to be

 1 2 3 1, , , , satisfactory level
F F F F Fx x x f  

  
.         

4.2. SLDM problem 
     By using (14) the following the membership functions can be 
formulated: 

 

   
   
         

   

2

2 2

2 2
2 2 2 2

2 2

2 2

0                                        ,

       ,

1                                         .

l

l
l u

f u l

u

f x f x

f x f x
f x f x f x f x

f x f x

f x f x



 

       




                                                                             

                                                                             (23) 
     Now, we can get the solution of the SLDM problem by solving 
the following Tchebycheff problem: 
                                   max                             (24) 
subject to: 

                         2 2f f x                      (25) 
      

   
1 2 3

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3

  ,      1, 2,...,
L L L

i i i i
iR R R L L L

i i i i i i

b a x a x a x
i m

a x a x a x a x a x a x


  
 

    

                                                         

                                                                             (26) 
                           0 1i                               (27) 
                                        

                  

              3 4 3 4, 0,    1d d d d                 (28)     

             1 2 30,  0,  0x x x                 (29) 
     Whose solutions are assumed to be: 
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           1 2 3 2, , , , satisfactory level
S S S S Sx x x f  

  
.         

 
4.3. TLDM problem 
     By using (15) the following the membership functions can be 
formulated: 

 

   
   
         

   

3

3 3

3 3
3 3 3 3

3 3

3 3

0                                        ,

       ,

1                                         .

l

l
l u

f u l

u

f x f x

f x f x
f x f x f x f x

f x f x

f x f x



 

       




                                                                              

                                                                              (30) 
     Now, we can get the solution of the TLDM problem by solving 
the following Tchebycheff problem: 
                            max                                     (31) 
subject to: 

                               3 3f f x                  (32)    

    
   

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3

  ,      1, 2,...,
L L L

i i i i
iR R R L L L

i i i i i i

b a x a x a x
i m

a x a x a x a x a x a x


  
 

    

                                                                             

(33)    
                              0 1i                            (34) 

                      5 6 5 6, 0,    1d d d d         (35)      

                    1 2 30,  0,  0x x x          (36) 
     Whose solutions are assumed to be: 

          1 2 3 3, , , , satisfactory level
T T T T Tx x x f  

  
.  

 
4.4 TLP problem 
     Now the solution of the FLDM, SLDM, and TLDM are 
disclosed. However, three solutions are usually different because 
of nature between three levels objective functions. The FLDM and 

SLDM knows that using the optimal decisions 1 2,
F S

x x  as a 
control variables for the TLDM are not practical. It is more 
reasonable to have some tolerance that gives the TLDM an extent 
feasible region to search for his/her optimal solution, and also 
reduce searching time or interactions. 

     In this way, the range of decision variables 1 2 and  x x

should be around 1 2 and 
F S

x x  with maximum tolerances 

1 2 and t t  respectively. The following membership function 

specify 1

F
x : 

                    
 

 

 

1 1

1 1 1

1
1

1 1

1 1 1

1

1
1

1

1
1

     ,

     ,

F

F F

x F

F F

x x t
x t x x

t
x

x t x
x x x t

t



      
  
   


                                    

                                                                             (37) 

where 1

F
x  is the most preferred solution, the  1 1

F
x t and 

 1 1

F
x t  is the worst acceptable decision. 

     Also the following membership function specify 2

S
x : 

                 
 

 

 

2 2

2 2 2

2
2

2 2

2 2 2

2

2
2

2

2
2

     ,

     ,

S

S S

x S

S S

x x t
x t x x

t
x

x t x
x x x t

t



      
  
   


                               

                                                                                           (38) 

where 2

S
x  is the most preferred solution, the  2 2

S
x t and 

 2 2

S
x t  is the worst acceptable decision. 

     First, the FLDM goals may reasonably consider 1 1
Ff f  is 

absolutely acceptable and 1 1
\f f  absolutely unacceptable 

where  1 2 31 1
\ , ,

S S S
f f x x x  and that the preference with 

1 1
\ , Ff f    is linearly increasing. 

     Then the following membership function of the FLDM can be 
stated as: 

          

 

   
   
         

   

1

1 1

1 1
1 1 1 1

1 1

1 1

\

\
\ \

\

0                                        ,

       ,

1                                         .

F
f F

F

f x f x

f x f x
f x f x f x f x

f x f x

f x f x



 

       




                        

                                                                            
                                                                                  (39) 
     Second, the SLDM goals may reasonably consider 2 2

Sf f  

is absolutely acceptable and 2 2
\f f  absolutely unacceptable 

where  1 2 32 2
\ , ,

T T T
f f x x x  and that the preference with 

2 2
\ , Sf f    is linearly increasing. 

     Then the following membership function of the SLDM can be 
stated as: 
 
           

 

   
   
         

   

2

2 2

2 2
2 2 2 2

2 2

2 2

\

\
\ \

\

0                                        ,
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



                     

                                                                                 (40) 
    Third, the TLDM may be willing to build a membership 
function for his/her objective function as follows: 
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                                                                             (41) 

where  1 2 33 3
\ , ,

S S S
f f x x x . 

     Finally, we can generate the satisfactory solution by solving 
the following Tchebycheff problem. 
                                   max                             (42) 
subject to: 

                             
 1 1 1

1

F
x x t

I
t


 


    

  (43) 

                            
 1 11

1

F
x t x

I
t


 

        (44) 

                           
 2 2 2

2

S
x x t

I
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
 

        (45) 

                          
 2 22

2

S
x t x

I
t


 

         (46) 

                           1 1
\
f f x                      (47) 

                           2 2
\
f f x                     (48) 

                           3 3
\
f f x                     (49) 

        
   

1 2 3

1 2 3 1 2 3

1 2 3
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  ,      1, 2,...,
L L L
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

  
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    

                                                                             

(50) 
                           0 1i                               (51) 

              1 2 3 4 5 6 1 2, , , , , 0,    1d d d d d d d d  

3 4, 1,d d  5 6 1d d 
    

                      (52)     

                 1 2 30,  0,  0x x x            (53) 
 
where   is the overall satisfaction, and I is the column vector 
whose elements are equal to 1.  
     By solving problem (42)-(53) if the FLDM is satisfied with the 
obtained solution then satisfactory solution is reached. Otherwise, 
he/she should provide new membership function for the control 
variable and objective to the SLDM, who also should provide new 
membership functions for the control variable and objective to the 
TLDM until a satisfactory solution is reached. 
        
 
 

5. NUMERICAL EXAMPLE 
     To clarify the solution method for TLP problem with interval 
coefficients in both of the objective function and constraints. Let 
us consider the following example: 
                 

       
1

1 1 2 3 1 2 3max , , 2, 4 3,6 5,9 ,
x

f x x x x x x                                     

where 2 3,x x  solve: 
                

       
2

2 1 2 3 1 2 3max , , 9,14 4,8 2, 7 ,
x

f x x x x x x                                 

and 3x  solves: 
 

              
     

 
3

3 1 2 3 1 2

3

max , , 1,5 11,14

                              6,10 ,
x

f x x x x x

x

 


                                  

subject to  

                        1 2 33,6 5,7 2,5 9x x x     

                        1 2 31, 2 2,7 3,5 12x x x                              

                              1 2 3, , 0x x x     

     For 
1 2 3 4

5 6

0.5,  0.5,  0.4,  0.6,
 0.3,  0.7,
d d d d
d d
   

 
and

1 2 0.5    and by using mathematical treatment described 
in section 3 the above problem can be formulated as the following 
deterministic TLP problem: 

                     
1

1 1 2 3 1 2 3max , , 2 3 4.5 ,
x

f x x x x x x                                    

where 2 3,x x  solve: 

                 
2

2 1 2 3 1 2 3max , , 6.1 3.6 3.3 ,
x

f x x x x x x                                 

and 3x  solves: 
 
               

3
3 1 2 3 1 2 3max , , 2.3 4.8 3.8 ,

x
f x x x x x x                                   

   subject to  
                   1 2 34.5 6 3.5 9x x x     

                   1 2 31.5 4.5 4 12x x x                              

                              1 2 3, , 0x x x     
     By using the fuzzy method proposed in section 4, the solution 

of the first level is    1 2 3, , , 0,0, 2.571,1
F F F Fx x x    

and 1 11.569Ff  . The solution of the second level is 

   1 2 3, , , 2,0,0,1
S S S Sx x x    and 2 12.2Sf  . The 

solution of the third level is 
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   1 2 3, , , 0,0.0008, 2.57,1
T T T Tx x x    and 

3 9.769Tf  . 

     Let the FLDM control decision 1

F
x  is around 0 with tolerance 

1 1t  and the SLDM control decision 2

S
x  is around 0 with 

tolerance 2 1t  . Then the Tchebycheff problem (42)-(53) take 
the following form: 
 
                                     max                                                                                      
subject to: 
                                         1 1x I       

                                         11 x I                    

                                      2 1x I                               

                                         21 x I                                                                                             

                         1 2 32 3 4.5 7.567 4x x x      

                  1 2 36.1 3.6 3.3 3.72 8.48x x x      

                       1 2 32.3 4.8 3.8 5.169 4.6x x x                  

                           1 2 34.5 6 3.5 9x x x     

                           1 2 31.5 4.5 4 12x x x                              

                              1 2 3, , 0x x x    

                                0,1   

     Whose solution is: 

   1 2 3

1 2 3

, , 0.666,0,1.7152 ,   0.334,  
9.0504, 9.7228 and 8.0496

x x x
f f f

 

  
. 

 
6. CONCLUSION 
     A solution method for TLP problem with interval coefficients 
has been introduced. These coefficients are located in both of 
objective functions and constraints. A fuzzy approach is used in 
the introduced solution method. The concept of tolerance 
membership function is used. The investigation of other solution 
methods for multi-level programming with interval coefficients 
would be future topics.  
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