Environmental Waste Reuse in Geotechnics: A Review of Soil Stabilization through Pozzolanic Reactions

Waleed Zaid

Research Assistant, Department of Civil Engineering, University of Wisconsin-Milwaukee, 53211, MI, USA.

Correspondence should be addressed to Waleed Zaid; wzaid@uwm.edu

Received: 2 October 2025 Revised: 16 October 2025 Accepted: 30 October 2025

Copyright © 2025 Made Waleed Zaid. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: The significant increase in industrial and agricultural waste has raised substantial environmental concerns, prompting the exploration of more sustainable methods for their reuse in geotechnical engineering. This review paper aims to investigate the potential use of bottom ash (BA), fly ash (FA), rice husk ash (RHA), coffee husk ash (CHA), sawdust ash (WSA), and granulated blast furnace slag (GGBS) to enhance the geotechnical properties of soil for various applications. The study results demonstrated the optimum replacement ratios for each additive, focusing on improving the mechanical and chemical properties of the soil. The improvements observed were mainly attributed to pozzolanic interactions. Specifically, the results included a 400% improvement in California bearing ratio (CBR) values at 20% BA content, a 35% increase in unconfined compressive strength (qu)values at 30% GGBS, and a 57.4% decrease in soil plasticity at 20% CHA with 9% gypsum. Additionally, adding 15% of RHA raises the qu value from 510 to 1100 kPa. Ultimately, this study supports the sustainable reuse of waste materials in soil stabilization, promoting their use in various engineering applications while reducing reliance on traditional, environmentally harmful stabilizers.

KEYWORDS: Geotechnical Engineering; Pozzolanic Interactions; Soil Stabilization; Soil; Environmental Concerns.

I. INTRODUCTION

The growing in population and industrialization have led to a significant increase in the amount of waste generated annually, causing concerns about their adverse impact on the environment. The waste materials generated include concrete, gravel, ceramics, glass, wood, and other byproducts from building demolition, organic matter, cement, plastic, wood, and more. According to Figure 1, the amount of waste produced annually is increasing consistently, which was 2.017 billion in 2016, 2.586 billion in 2030, and 3.401 billion in 2050. Waste production differs across regions due to consumption rate, population growth, and economic growth. Developed countries generate high amounts of waste because of their high consumption style. Instead, developing countries produce a relatively smaller percentage of waste, so they face challenges in disposing of this waste. The increase in waste is a critical issue that poses challenges to health, the environment, and the economy [2] [54] [52] [50] [51]. It leads to pollution and depletion of natural resources. To fix this issue, scientists are focusing on developing solutions such as recycling, bio-analysis, promoting sustainable design and green manufacturing, and increasing the awareness of waste management. Civil engineers have an important role in waste management to promote environmental sustainability and reduce costs, as they reuse waste for construction applications (e.g., roads, pavement, concrete mixes, railroad, asphalt, etc.) Bolden et al[27]; Mohajerani et al.[110]; Mohajerani et al.[109]; Rahman et al.[126]; Bamigboye et al.[19]; Reiterman et al.[130]; Nalon et al.[162]; Indraratna et al.[84]; Zaid and GÜNAL [156]; Eid et al. [41]. Hasim et al. [56] showed that replacing fine and coarse aggregates of concrete with 50%, 60%, 70%, 80%, 90%, and 100% of fine and coarse coal bottom ash decreased the value of concrete slump flow. The compressive and tensile strength of concrete reached a maximum value at 50% replacement of fine and coarse coal bottom ash.

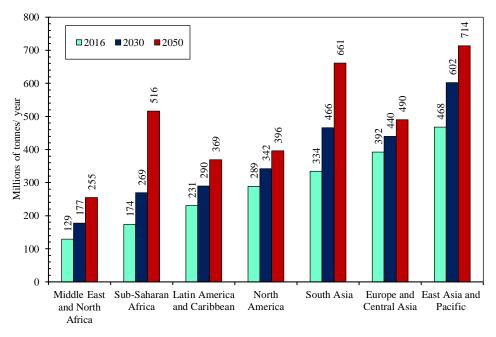


Figure 1: Projected waste generation, by region (millions of tons/years) (Kaza et al., 2024).

Meanwhile, researchers are exploring the fruitfulness of waste materials in geotechnical engineering, particularly in soil stabilization. Figure 2 provides a map of density visualization obtained through VOS viewer software for the countries that use waste materials most commonly for soil stabilization. The results are based on 1954 scientific research papers published between articles, books, and scientific conferences. The red color represents the total links and strength between these countries in the use of waste materials. Interestingly, there is a strong interconnection between the United States, Spain, United Kingdom, China, Australia, India, Thailand, Turkey, Italy, and Germany. Concurrently, there is a strong similarity and correlation between research conducted in Nigeria, Malaysia, Indonesia, Egypt, Iraq, Iran, Japan, Canada, and Taiwan.

Wherefore, geotechnical researchers have highlighted that waste materials can be effective in enhancing soil properties, such as bearing capacity, k, swelling, plasticity, specific gravity (G_s), CBR, q_u, and several mechanical and physical properties [5] [81] [34] [11][14] conducted a study on the effect of fly ash, rice husk ash, bagasse ash, and agricultural waste material rice straw ash (5 to 35%) in clay soil. The results showed a decrease in the maximum dry density of the clay, an increase in optimum moisture content, as well as an increase in CBR values. Besides, soil improvement can be achieved through physical, biological, and chemical techniques. Chemical methods, which use traditional materials like cement and lime or non-traditional materials such as polymers and enzymes, have proven to be more effective in improving soil properties.

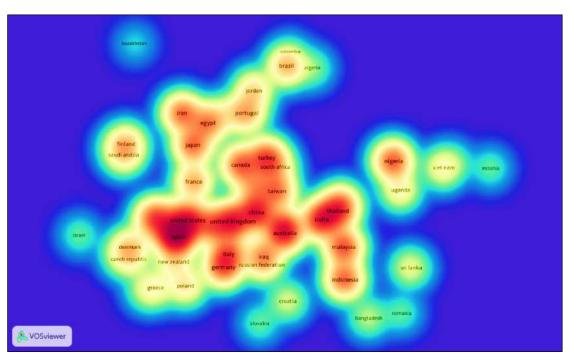


Figure 2: Density visualization map of countries that utilize waste material in soil stabilization.

The objective of this study is conducting a comprehensive review and analysis of various waste materials, including bottom-fly-ash, wood waste, ground granulated blast furnace slag, and husk ash, to assess their effectiveness in enhancing soil properties. Several researchers have demonstrated the potential of these materials in the field of geotechnical engineering, and their use has been proven to be beneficial in the construction of roads, pavements, and other structures. Moreover, their utilization can play a significant role in environmental conservation. This study highlights the importance of exploring the potential of these waste materials and their positive impact on the geotechnical field with constructive recommendations for researchers.

II. MATERIALS, RESULTS, AND DISCUSSION

A. Bottom and Fly Ash Wastes

Soil reinforcement using bottom ash is a technique employed to improve the mechanical properties of soil. Bottom ash, a by-product of coal combustion in power plants, has gained popularity as a construction material due to its unique properties, including high porosity, low density, and effective drainage capacity. Several studies have investigated the impact of bottom ash on soil reinforcement [48] [90] [157] [141]. Forteza et al. [49] presented findings indicating that the metal levels in raw bottom ash (BA) and its leachates comply with environmental regulations, provided that the ash is stored for at least one month. The engineering characteristics of BA resemble those of natural aggregates, suggesting that using these residuals in road construction is a practical option. Pant et al.[117] found that geogrid embedded in compacted BA exhibited similar resistance to that in the sand. In contrast, un-compacted fill material reduced pullout resistance by 30-60%. These results emphasize the importance of proper placement conditions for effective reinforcement. The addition of 0-50% BA to the soil, combined with lime content, enhances the development of the strength index and improves curing time, which ranges from 1 to 56 days. Generally, 50% BA with 12% lime resulted in a doubling of strength improvement and high durability [24] [135] [71] [51] identified the optimal

proportions of fly ash (FA), BA, and soil to enhance the strength of the mix. The study showed that a mixture consisting of 12% BA, 18% FA, and 70% soil improved the CBR value by 13.7%, representing a 4.02% increase compared to the original soil.

However, supplementary Table 1 provides the change in soil parameters that affect its properties and the potential its use in various applications. For example, Jorat et al. [92] showed that mixing kaolin soil with BA at 0, 25, 50, and 60% decreased the parameters of C, γ_{max} , and w_{opt} . Conversely, the ϕ increased. Notably, the CBR value showed a significant increase up to 50% BA. The pozzolanic nature of BA, which consists of silica, alumina, and unburned carbon, affects kaolin soil properties. The cohesion values decrease due to the disruption of the bonds between kaolin particles, which are replaced by coarser, less cohesive particles. Additionally, the high specific gravity and porosity of BA cause a decrease in density and moisture content. CBR values showed improvement at 50% BA content, attributed to the densification and rearrangement of particles, which enhances load-bearing capacity. Overall, the pozzolanic interactions between the silica and alumina in BA with calcium from the kaolin result in the formation of cementitious compounds, which may improve kaolin properties. However, a high BA content may lead to particle instability. Furthermore, Phan et al. [120] conducted a study on the impact of BA content on the pH and electrical conductivity of clay soil. The finding indicated that the addition of 5, 10, 20, and 30% of BA improved the pH values by 14, 21, 26, and 31%, respectively. In terms of electrical conductivity, the improvements were 208, 340, 491, and 655%. The observed improvement in pH values with the addition of BA is due to its alkaline nature. BA contains calcium and magnesium oxides, which can help release hydroxyl ions (OH-) into the soil mixture. This neutralizes soil acidity and raises the pH. Similarly, the notable increase in electrical conductivity is a result of the dissolution of soluble salts, including sulfates, chlorides, and carbonates found in the BA. These ions enhance ionic strength, consequently boosting conductivity.

Table 1. Summary of various studies on soil mixed with BA content

Reverence	Soil type	BA ratio (%)	Outcomes
Jorat et al.[92]	kaolin	25, 50, 60	C, γ_{max} , w_{opt} (+), φ (+), CBR (+) up to 50%
Dissanayake et al.[38]	СН	8, 16, 24	q_u , LL, PI (+), PL (-), γ_{max} (+) up to 8%, w_{opt} (+) at 16, and 24%
Sudhakaran et al. [140]	MH	10, 20, 30, 40	γ_{max} (+) up to 30%, w_{opt} (+) up to 30%
Le et al., 2018 [102]	CH	5, 10, 20, 30	Linear shrinkage (+), q _u (+)
Devi et al. [37]	BCS	5, 10, 15, 20, 25, 30	CBR, γ_{max} (+), w_{opt} (+)
Phan et al. [120]	Clay	5, 10, 20, 30	pH, electrical conductivity (+)
Gaur et al., [50]	Clay	10, 20, 30, 40	LL, PL, PI (-), CBR, γ_{max} (+) up to 30%, w_{opt} (+)
Navagire et al. [164]	BCS	10, 20, 30, 40	LL, PL (-), Gs (+) up to 10%, q_u , CBR, γ_{max} (+) up to 30%, w_{opt} (+)
Melese et al.[108]	Clay	10, 15, 20, 25, 30	Free swell, Gs, LL, PI, PL (-), q _u (+)
Al-Alawi et al.[8]	СН	6, 8, 10, 12	pH (-), CBR, q_u , γ_{max} , w_{opt} (+) up to 10%

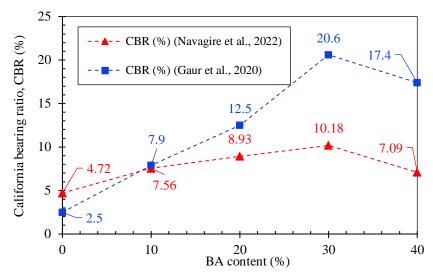


Figure 3: The CBR values of soil mixed with BA content.

Figure 3 summarizes the CBR values resulting from mixing 10, 20, 30 and 40% BA into BCS [164]) and clay soil [50][51]. The findings show a 216, 400, and 724% improvement in the CBR value of clay-BA mixtures at 10, 20, and 30% BA, respectively. In contrast, the BCS-BA mixtures showed an improvement of only 60, 89, and 116%. The greatest improvement in CBR of clay is attributed to the strong, highly malleable BA particles, which combined with the inclusion of coarser BA, these particles improve particle aggregation and reduce plasticity, thereby enhancing load-bearing capacity. Additionally, pozzolanic reactions between silica BA and alumina with calcium produce cementitious compounds that further enhance strength. BA has proven to be effective in soil improvement, particularly CBR values at specific concentrations, but its effectiveness decreases beyond a certain point, indicating a saturation point threshold. Additionally, the significant decreases in density and moisture content could negatively impact soil behavior and durability in various applications. It has also been noted that the pozzolanic reactions with BA are conditioned by the presence of lime, thus, its effectiveness when used alone is limited.

Fly ash is a fine, powdery byproduct of coal combustion, primarily composed of silica, alumina, and iron oxide. It has been widely used in geotechnical applications, particularly in stabilizing soil properties for greater usability. Its pozzolanic properties make it a cost-effective and more sustainable alternative to traditional stabilizers such as lime and cement, contributing to environmental conservation [121] [45]. Toth et al. [148] found that coal ash can be used as a substitute for natural materials in structural fields. Besides, in 2005, fly ash was utilized for highway embankments in Maryland. Brooks et al. [29] demonstrated that adding 0, 15, and 25% FA significantly improved the compaction and strength of clay soil. Their results indicated an increase in LL and PL values of clay, while the PI value decreased with the addition of FA. The γ_{max} value of clay decreased at all ratios of FA. This decrease can be attributed to the cation exchange process, the clay particles agglomerated with fly ash occupy larger areas, thus increasing the volume and reducing the density. Conversely, because FA absorbs water to complete the reaction, the wont of clay increased with the addition of 15 and 25% of FA. Furthermore, mixing 15 and 25% of FA with clay enhanced the soaked CBR values. The increase in CBR values can be attributed to cationic exchange, or flocculation in the mixture and agglomeration, which may form a cement gel resulting from the pozzolanic reaction of the clay-FA mixture. Similarly, the reaction of cationic exchange resulted in the replacement of the sodium ions with calcium ions, hence, reducing decreasing the swell values of mixture. The results also indicated that the q_u of clay decreased with FA addition, even after curing days of 1, 7, and 28 days. In simple words, this decrease is explained by the fact that FA remained as a fine material when mixed with clay, leading to lower qu values. Meanwhile, the CBR samples were soaked for 4 days in water, which allowed chemical reactions to occur between the clay and the FA, thereby improving the CBR values. Likewise, Turan et al. [149] showed improvements in the strength and CBR values of soil, a reduction in the PI value, prevention of soil swelling, and enhanced k values. The widespread availability, economic feasibility, and ecofriendliness of FA make it an attractive material for soil stabilization geotechnical applications. in characteristics make FA a popular choice researchers and practitioners in the field of soil stabilization. The effect of FA addition on the properties of clay, BCS, silty soil, sand, and other types of soil can be observed in Table 2. For instance, the LL value of clay decreased with addition of 3, 6, 9, and 12% FA. The 3 and 6% additions of FA reduced the γ_{max} and increased the w_{opt} . However, the q_{u} enhanced with the addition of 6% FA [23].

FA content has been applied to CL, OL, and MH soils to improve the CBR value [124]. Figure 17 presents a comparison between CBR values for soils mixed with 9, 20, 28.5, 35.5, 41.2, and 46% FA. The CL-FA mixtures show significant improvements in CBR values, with enhancements of 49, 88, 96, 111, 127, and 147%, respectively. Additionally, mixing FA with OL and MH soils also resulted in increased CBR values, as shown in Figure 4. The higher CBR values of CL soil can be attributed to pozzolanic reactions. CL rich in fine clay particles react more effectively with the calcium and silica

in the BA, forming cementitious compounds such as calcium silicate hydrate (C-S-H) and calcium aluminate hydrate (C-A-H). These compounds enhance soil cohesion and stability. In contrast, OL and MH soils have higher organic matter content and clay fractions, exhibit reduced pozzolanic reactions. The effect of 5, 10, 15, and 20% FA content on the γ_{max} values of clay [16], BCS, and silty clay [96] are presented in Figure 5. The γ_{max} of clay and silty clay showed a clear decrease when mixed with FA. While the γ_{max} of BCS-FA mixtures increased, with improvement of 7, 35, and 36% observed at 5, 10, and 15% FA addition, respectively. The variation in density values in clay is affected by the physical properties of the FA.

When FA content is added to clay, it often results to a decrease in γ_{max} because the FA particles tend to act as fillers. This reduces the efficiency of void filling, resulting in increased porosity and decreased γ_{max} . In contrast, BCS shows improved γ_{max} behavior when mixed with FA. This enhancement is attributed to the presence of minerals such as montmorillonite, which exhibit greater interaction with the calcium and silica in the FA. This interaction promotes the formation of cementitious compounds, strengthening the soil particles, reducing voids, and ultimately increasing density.

Table 2. Summar	v of various	studies on	soil mixed	with FA content

Reverence	Soil type	FA ratio (%)	Outcomes
Prabakar et al.[123]	CL	9, 20, 28.5, 35.5, 41.2, 46	γ_{max} (+), C, w_{opt} (+), φ (+) up to 28.5%, , CBR (+)
Prabakar et al.[123]	OL	9, 20, 28.5, 35.5, 41.2, 46	γ_{max} (+), C, ϕ , w_{opt} , CBR (+)
Prabakar et al.[123]	MH	9, 20, 28.5, 35.5, 41.2, 46	C, γ _{max} (+), φ, w _{opt} , CBR (+)
Bhuvaneshwari et al.[25]	Clay	10, 20, 25, 30, 40, 50	LL, PI (+) at 20 and 25%, PL (+), γ_{max} , w_{opt} (+), q_u (+) up to 10%
Sezer et al.[176]	Clay	5, 10, 15, 20	γ_{max} (+), w_{opt} (+), q_{u} (+) up to 15%
Lin et al., [104]	Soft soil	2, 4, 8, 16	γ_{max} (+), w_{opt} , CBR (+), q_u (+) up to 8%
Bose et al.[28]	Clay	20, 40, 60, 80, 100	CBR, $q_{uv} \gamma_{max}$ (+) up to 20%, w_{opt} , swelling pressure, Gs, LL, PL, PI (+)
Sharma et al.[134]	CL	10, 20, 30, 40	$\gamma_{\rm max}$ (+) at 20 and 30%, $w_{\rm opt}$ (+)
Ahmed et al.[4]	GC	5, 15, 20	γ_{max} (+) up to 15%, w_{opt} (+) up to 5%,
Dissanayake et al.[38]	СН	8, 16, 24	q_u , LL, PI (+), PL (-), γ_{max} (+) up to 16%, w_{opt} (+)
Kumar et al.[100]	BCS	5, 10, 15, 20	LL, PL, PI (+), CBR (+) at 10 and 15%
Khillar et al.[96]	Silty clay	5, 10, 15, 20, 25, 30	γ _{max} (+), w _{opt} (+),
Bhowmik et al.[23]	Clay	3, 6, 9, 12	γ_{max} (+) up to 3 and 6%, w_{opt} (+) up to 3 and 6%, LL (+), q_u (+) up to 6%
Hatmoko et al.[57]	SC	1.4, 2.1, 2.8, 3.5, 4.2	LL, PL, PI (+), γ _{max} (+) up to 2.1%, w _{opt} (+), CBR (+)
Jujjuri et al.[164]	BCS	5, 10, 15, 20	Swelling index, Gs (+), LL, PL (+), γ_{max} (+) up to 15%, k (+) up to 15%

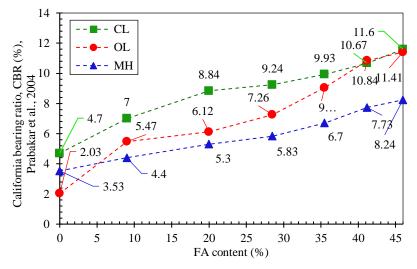


Figure 4: The CBR values of various soil types mixed with BA content.

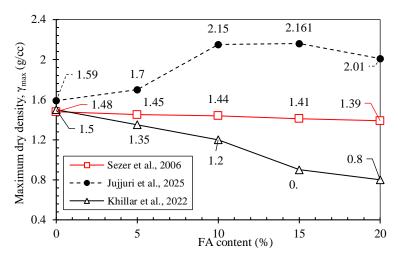


Figure 5: The γ_{max} values of various soil types mixed with FA content.

B. Husk Ash Waste

Rice husk is abundantly available in rice-producing countries such as Indonesia, Thailand, and the Philippines [60]. The practice of burning rice husk for parboiling paddy in rice mills often leads to partial combustion and environmental issues. To address these challenges, efforts are being made to utilize rice husk as a value-added substitute or auxiliary material for geotechnical and soil stabilization applications [165]. Several researchers have investigated the use of husk ash (e.g., rice ash, coffee ash, and ground-nut ash) for soil improvement [30] [7] [22] [124] [127] [131] [119] [143]. For example, Nnochiri et al. [160] found that γ_{max} of soil decreased from 19.22 to 17.26 kN/m³ at 10% ground-nut husk ash (GHA), while w_{opt} increased from 12.70 to 14.95%. The unsoaked CBR values of soil increased from 24.42 to 72.88%, and UCS values increased from 510.25 to 1186.46 kPa, with the highest values observed at 10% GHA. GHA can therefore be considered a cost-effective stabilizing agent for subgrade and sub-base applications in road construction. Ali et al. [10] investigated the effects of 6, 12, and 18% of rice husk ash (RHA) on the silt clay properties. The results showed that increasing RHA content led to a reduction in γ_{max} of soil, decreasing from 1.6 to 1.47 g/cm³, while the w_{opt} increased from 18.3 to 23.4%. The increase in γ_{max} and decrease in w_{opt} values is attributed to the properties of RHA, which has a low G_s value and high additional water properties. The qu value of soil increased with addition of 12% RHA content but then decreased with longer curing time. Adding lime to the soil increases the pozzolanic interactions between silica from the soil and the lime, thus forming strong stabilizing agents. When RHA is added to the soil -lime mixture, the amount of silica increases to interact with lime, leading to enhanced bonding and strength. The optimal RHA content also improves the saturation resistance of soil. Therefore, treatment of residual soil with RHA-lime mixtures is beneficial for road construction. Various researchers have tended to use additional materials with RHA content to stabilize properties of soil, for instance, Basha et al., [21] investigated the effect of using 5, 10, 15, and 20% RHA in combination with 2, 4, 8, and 12% cement to stabilize RS. The results showed an increase in LL and PL values, a decrease in PI, and γ_{max} values, but an increase in W_{opt} of

RS. The reduction in PI values signifies an improvement in the soil mixture, while the decrease in γ_{max} values suggest enhanced resistance within the soil structure against external forces during practices. The qu value increased with the addition of 5% RHA to the soil but then decreased. Conversely, the addition of 4 and 8% cement to RHA increased the UCS of RS. The CBR value decreased with higher RHA content, but adding RHA to cement-treated soil improved CBR values. The optimum amounts for improvement were found to be 6-8% cement and 15-20% RHA. Overall, RHA has demonstrated significant potential for soil stabilization and is a cost-effective option, particularly in rural areas of developing countries. Liu et al. [105] found that increasing the content of RHA content and calcium carbide residue (CCR) significantly reduced the number of cracks in ES, as shown in Figure 6. At 0% of additives, there were more than 30 coarse cracks. When the additive increased to 5%, more than 20 cracks were observed, with half being coarse. At 10% addition, there were approximately 10 cracks, a few of which were coarse. When the blending content was increased to 15%, more than 5 visible but mostly thin cracks were observed, while at 20%, there were less than 5 mostly thin cracks. Additionally, the RHA-CCR also improved the qu, C, and \$\phi\$ values of the soil. The maximum C value enhanced by 2.45 times compared to uncured soil with the addition of 15% RHA after 28 days of curing. Similarly, the φ value improved by 2.43 times with a 15% addition of RHA after 90 days of curing compared to uncured soil. Furthermore, Table 3 summarizes the use of RHA in different soil types, such as silty, clay, and organic soil. The results indicate a significant change in soil structure due to the varying reactions between soil particles at various ratios of RHA, making it more suitable for use in geotechnical applications. For example, Alhassan [9] studied the effect of adding 2, 4, 6, 8, and 10% RHA into clay soil. The outcomes of this study revealed an increase in wopt and CBR values, while the γ_{max} decreased. Additionally, the q_u improved up to 8%RHA, even with extended curing time. The addition of RHA to clay causes changes in its structure. Generally, RHA contains significant amounts of silica, which interacts with the aluminous components in the clay to create strong cementitious compounds. This reaction enhances the structure and strength of the clay, and these improvements continue to inverse with curing. Additionally, the low Gs of

International Journal of Innovative Research in Engineering and Management (IJIREM)

RHA contributes to decreased γ_{max} values, while its highwater absorption increases the w_{opt} value.

Figure 6: Crack morphology of ES with RHA-CCR content (curing time = 28 days) (Liu et al., 2019).

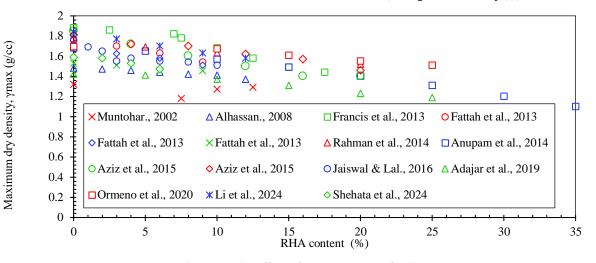


Figure 7: The effect of RHA on γ_{max} of soil

Table 3. Summary of various studies on soil mixed with tile and RHA content

Reverence	Soil type	RHA ratio (%)	Outcomes
Ali et al. [10]	SC	6, 12, 18	γ_{max} (-), W_{opt} (+)
Muntohar.[165]	Clay	7.5, 10, 12.5	Swelling, Cc, LL, PI (-), PL, CBR (+), γ_{max} (-) up to 7.5%, w_{opt} (+) up to 7.5%
Alhassan. [9]	Clay	2, 4, 6, 8, 10, 12	γ_{max} (-), w_{opt} , CBR (+), q_u (+) up to 8%
Fattah et al., [47]	CL	3, 6, 9	γ_{max} , Gs, LL, PI (-), PL, w_{opt} (+), q_u (+) up to 8%
Fattah et al., [47]	CL	3, 6, 9	γ_{max} , Gs, LL, PI (-), PL, w_{opt} (+), q_{u} (+) up to 8%
Fattah et al.[47]	СН	3, 6, 9	γ_{max} , Gs, LL, PI (-), PL, w_{opt} (+), q_u (+) up to 8%
Obam & Iorliam [166]	Clay	5, 10, 15, 20	LL, PI (-), PL (+)
Francis et al.[131]	Clay	2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20	γ _{max} (-), w _{opt} (+)
Anupam et al.[15]	CL	5, 10, 15, 20, 25, 30, 35	γ_{max} , (-), w_{opt} (+), CBR, q_u , C, φ (+) up to 25%
Kumar & Preethi.[99]	CI	5, 10, 15	q _u (+) up to 10%
Rahman et al., 2014[167]	RS	3, 5, 10, 20	γ_{max} (-), w_{opt} , k, shear strength (+)
Aziz et al.[18]	CL-ML	4, 8, 12, 16, 20	C, γ_{max} , Gs, LL, PI, PL (-), w_{opt} (+), φ (+) up to 16%
Aziz et al.[18]	СН	4, 8, 12, 16, 20	C, γ_{max} , Gs, LL, PI (-), PL, w_{opt} (+), φ (+) up to 16%
Akinyele et al.[7]	LCS	2, 4, 6, 8, 10	PI (-), PL LL, w _{opt} (+)
Rathan et al.[129]	Clay	5, 10, 20, 30, 40, 50, 80	C, LL, FSI (-), φ, CBR (+)
Rathan et al.[129]	Silt	5, 10, 20, 30, 40, 50, 80	C, LL, FSI (-), ф, CBR (+)
Jaiswal & Lal.[88]	OL	1, 2, 3, 4, 6, 8, 10	Voids, γ _{max} (-), w _{opt} , CBR (+)
Okwadha & Nyingi[112]	RCS	4, 6, 8, 10	LL, PI (-), PL, CBR (+)
Adajar et al[3]	Clay	5, 10, 15, 20, 25	γ_{max} , LL, PI (-), PL, w_{opt} (+)
Jain et al.[87]	CI	5, 10, 15, 20	ϕ , γ_{max} , FSI, PI (-), LL, w_{opt} , CBR, C (+)
Ormeno et al.[113]	CL	10, 15, 20, 25	γ_{max} , (-), w_{opt} , CBR (+)
Shehata et al[136]	Clay	2, 4, 6	γ_{max} (-), w_{opt} (+)
Li et al.[10]	CL	3, 6,9, 12	γ_{max} , (-), W_{opt} , q_u (+)

The effect of RHA content on γ_{max} values of various soil types, such as high plasticity clay, low plasticity clay, silty clay, red coffee soil, and others, is presented in Figure 7. The general trend for all values showed a decrease at RHA

ratios between 0-35%. This decrease can be attributed to properties of RHA, which has lower Gs than soil. Specific gravity measures a material's density relative to the density of water. Since RHA has a lower specific gravity than soil,

it weighs less and can be absorbed between soil particles, reducing the overall γ_{max} of the mixture. Chemically, incorporating RHA into clay does not change its chemical composition, but it does alter its physical properties related to density. This reduction in density also generally affects the compressive behavior of the soil. Lighter particles result in less compressible materials compared to denser soil, affecting the soil's strength and load-bearing capacity. Figure 8 illustrates the decrease in the w_{opt} of soil mixed with 0-35% of RHA. Generally, RHA has a high-water absorption capacity due to its porosity and large surface area. These properties enable greater water absorption when mixed with soil. Chemically, RHA contains silica, so when added to soil, it forms a network of microscopic pores that trap water. Its high surface area allows for greater moisture retention, leading to higher w_{opt} values for the mixture. Figure 9 presents the γ_{max} results for CH [47], OL [18] , and CL [88] mixed with 0-20% RHA. The results indicate that the CH-RHA mixtures exhibited the highest γ_{max} values, showing decrease s of 3.2, 6, 10.5, 13, and 19% at 4, 8, 12, 16, and 20% RHA, respectively. The OL-RHA mixtures showed the second highest γ_{max} values, with a clear decrease of 4, 6.5, 12, 10, 12, 13, and 14% at 1, 2, 3, 4, 6, 8, and 10% RHA, respectively. In contrast, the γ_{max} values for CL-RHA mixtures were the lowest. This variation in density can be explained by pozzolanic interactions between the silica in the RHA and the ammonia in the clay, which allows strong pozzolanic interactions.

These interactions are particularly strong in CH, resulting in higher densities compared to organic soils, which contain lower amounts of ammonia. Additionally, CL also exhibits lower densities because they contain lower amounts of both silica and ammonia. However, the wopt of CL mixed with 3, 6, and 9% RHA showed the highest improvement of 5, 12, and 16%, respectively, as shown in Figure 10. For CH, the wont values were the lowest among the soil types, showing improvement of 8, 15, 23, 35, and 40% at 4, 8, 16, 18, and 20% RHA, respectively. In OL, the w_{opt} values clearly improved by 50, 77, 95, 100, 109, 109, and 118%, at 1, 2, 3, 4, 6, 8, and 10% RHA, respectively. The CL has a finer grain structure with larger particles, which creates greater water-holding capacity, resulting in higher water content values when mixed with RHA. In contrast, CH contains finer particles that bond more tightly with RHA, reducing the water required for compaction. In other words, CL require more water to reach optimum strength than CH. Figure 11 demonstrates the CBR values of CH [129], OL [88], and CL [113] when mixed with RHA. The highest CBR values were noticed in CL-RHA mixtures, with values of 4.3, 15.4, 18.9, 20.7, and 23.7% at 10, 15, 20, and 25% RHA, respectively. The CBR values of OL-RHA mixtures were recorded 7.1, 7.7, 9.4, 9.2, and 10.1%, respectively. Additionally, the CBR of CH mixed with 10, 20, 30, 50, and 80% RHA were the lowest compared to those of CL and OL, as shown in Figure 11.

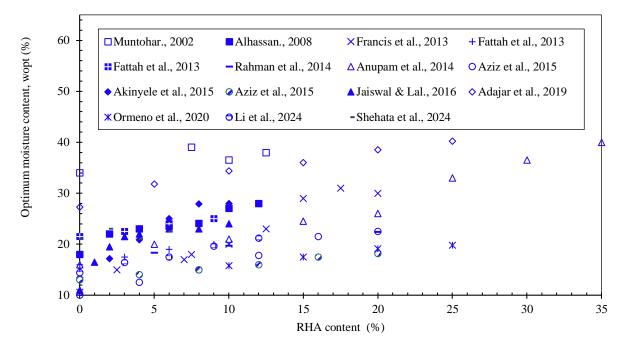


Figure 8: The effect of RHA on w_{opt} of soil.

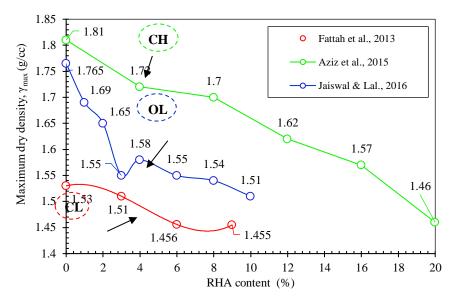


Figure 9: The effect of RHA on γ_{max} of high and low plasticity clay and organic soil.

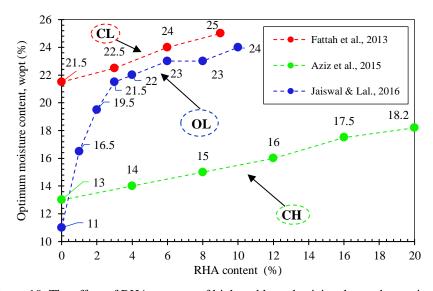


Figure 10: The effect of RHA on w_{opt} of high and low plasticity clay and organic soil.

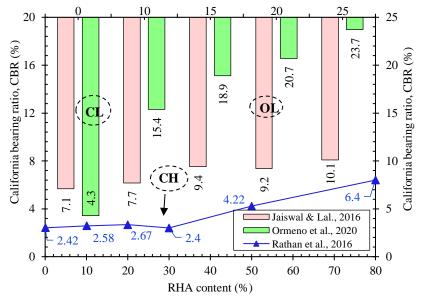


Figure 11: The effect of RHA on CBR of high and low plasticity clay and organic soil.

Some researchers have explored soil stabilization using coffee husk ash (CHA). It has been found to contain alumina components that help improve soil through pozzolanic bonds. CHA has higher levels of potassium and other minerals, such as magnesium, phosphorus, and trace minerals like iron and manganese. These components can affect soil properties differently than RHA. Table 4 presents the characteristics of various soil types mixed with CHA. For instance, Munirwan et al.[169] studied the influence of 5, 10, 15, 20, and 25% of CHA on properties of clay particles. The results showed a decrease in LL, PI values which reduce the swelling of soil [125], while the PL values of all clay-CHA minutes increased. The γ_{max} values improved with addition of CHA (5-25%) to the clay soil due to high Gs of CHA, which reflects the enhanced in the clay particles gradation with CHA content. Meanwhile, the wont values of the clay - CHA mixtures decreased, which can be attributed to low absorption of water for CHA content in clay soil. Figure 12 shows the general increase in γ_{max} values of different soil types mixed with CHA. The γ_{max} values in CH have increased from 1.22 g/cc to 1.224, 1.228, and 1.235 g/cc [169] and from 1.24 g/cc to 1.27, 1.34, and 1.362 g/cc [146] when mixed with 5, 10, and 15% CHA, respectively. Although the γ_{max} values are somewhat comparable, the difference can be attributed to a slight difference in the size of the particles used in each study. Notably, the highest γ_{max} values were recorded in gravel-CHA mixtures, as shown in Figure 13. The improvements observed were approximately 51, 57, 58, and 34%. Overall, this improvement in γ_{max} values is due to the pozzolanic reactions between the particles and the Gs value of CHA.

TC 11 4 C	c	•	. 1.	• 1		• .1	. 1	1 CTT 4 4 4
Table 4. Summary	αt	Uarione	etuidide c	າກ ເດນ	mivad	whith	file one	II HA CONTANT
Table 7. Sullillia y	OI.	various	studies (лі зоп	пплси	willi	uic and	i CIIA content

Reverence	Soil type	CHA ratio (%)	Outcomes
Mamuye & Geremew.[106]	СН	5, 10, 15, 20, 25	w_{opt} , LL, PL, PI (-), γ_{max} , CBR $(+)$
Atahu et al., [17]	СН	5, 10, 15, 20	CBR (+)
Woldegiorgis.[151]	ES	10, 20, 30	LL, PL, γ_{max} (-), w_{opt} , CBR (+)
Muhwezi & Kyazze [175]	G	5, 10, 15	γ _{max} , CBR (+) up to 10%
Atahu et al.[16]	СН	5, 10, 15, 20	Cs, Cc, Gs, w_{opt} , FSI, LL, PI (-), PL, γ_{max} (+) up to 10%, q_u (+) up to 15%
Munirwan et a l[168]	ОН	3, 6, 9, 12	Gs, LL, PI (-), PL (+)
Munirwan et al [89]	СН	5, 10, 15, 20, 25	w_{opt} , Gs, LL, PI (-), C, φ , PL, γ_{max} , q_{u} $(+)$
Munirwan et al.[169]	СН	5, 10, 15, 20, 25	γ_{max} (+), w_{opt} (-)
Munirwan et al [169]	Clay	5, 10, 15, 20, 25	Gs, LL, PI, w_{opt} (-), PL, γ_{max} , CBR, q_{u} (+)
Tessema et al.[146]	СН	5, 10, 15, 20, 25	w_{opt} , FSI (-), $q_u(+)$ up to 15%, CBR, $\gamma_{max}\left(+\right)$

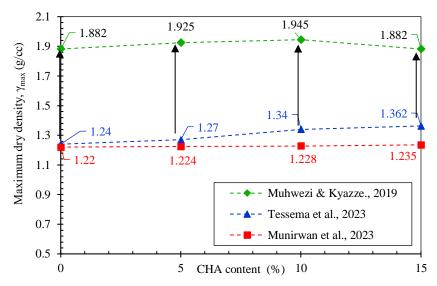


Figure 12: The effect of CHA on γ_{max} of soil.

The w_{opt} of different soil types mixed with CHA is illustrated in Figure 13. The results showed a clear decrease in w_{opt} for all mixtures. This significant reduction can be attributed to the low water absorption properties of CHA.

Consequently, substituting soil particles that effectively absorb water with less absorbent particles results in a decrease in their w_{opt}. Furthermore, [145] stabilized the ES by adding CHA in ratios of 5, 10, 15 and 20%. The results revealed a decrease in the LL, PL, and PI values, which

contributed to an increase in the strength of the soil mixture due to reduction in the PI. By mixing the soil particles with CHA content, the γ_{max} values of mixtures increased by up to 15% CHA addition, as the CHA filled the voids between particles with its high Gs, promoting the agglomeration and flocculation of clay- CHA particles as a result of quick cation exchange. In contrast, the w_{opt} values decreased

across all CHA ratios due to low absorption water of stabilizer. The addition of CHA also reduced the swelling of ES, as more CHA was introduced, it formed a better agglomeration and decreased the soil's volume change. Consequently, the CBR value of the soil increased with CHA content.

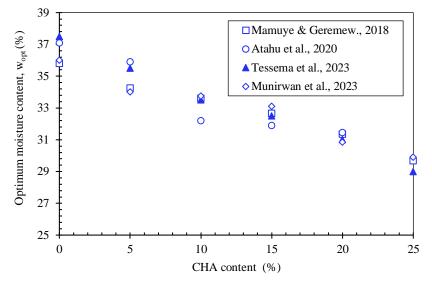


Figure 13: The effect of CHA on Wopt of soil.

Some researchers have tended to mix CHA with other additives into soil to enhance their mechanical and chemical properties. For example, Tessema et al. [146] studied the effect of mixing 5, 10, 15, 20, and 25% of CHA with 3, 6, and 9% of gypsum on clay properties. The results of their study showed that mixing clay soil with 20% CHA content decreased the LL and PI values by 24.5 and 57.4%, respectively. Similarly, when 9% gypsum was added to a clay-15% CHA mixture, the LL and PI values decreased by 41.5 and 81.5%, respectively. A decrease in PI values is a good indicator of a reduced swelling in the clay. The γ_{max} values of clay- CHA mixture increased, while the wont values decreased. In contrast with the addition of 9% gypsum to the clay – 15% CHA the γ_{max} value decreased by 3.23%, and w_{opt} value increased by 11.60%. The CBR value of clay also increased with addition of CHA, especially when mixed with gypsum content, making it suitable for subgrade layers. The qu value of clay increased when mixed with 5-15% of CHA. The highest value of q_u was at 15% CHA and 6% gypsum. This increase can be attributed to the additives that produce cement chemicals that increase reactivity and hardening. Sreedevi et al. (2024) observed that qu value of clay increased when mixed with 5, 10, 15, 20% of CHA, but it decreased with addition of 25% CHA. Furthermore, by adding 6% lime to clay mixed with 20% CHA, the q_u values significantly increased, reaching approximately 3.64, 3.68, and 3.75 kPa at 7, 14, and 28 curing days, respectively.

C. Wood Waste

Wood waste, including wood chips, sawdust, and bark mulch, consists of organic materials derived from trees and various wood processing and disposal activities. These activities occur in forests, wood mills, carpentry and furniture classification, and construction and demolition demolition sites. Wood waste contributes to soil improvement, addresses significant environmental concerns, enhances nutrient levels, increases water retention, and promotes microbial activity [115] [142] [89] [107]. Before using wood ash for soil stabilization, it may need to undergo certain preparation processes. This often includes screening to remove large particles and impurities. In some cases, wood ash is burned at high temperatures to eliminate unburned organic matter, which enhances its pozzolanic properties and makes it more effective at stabilizing soil. Sometimes, wood is mixed with other stabilizers such as lime or cement to enhance its bonding properties. For Insurance, Nnochiri et demonstrated the impact of wood sawdust ash (WSA)-lime mixtures on $q_{\text{u}}, \gamma_{\text{max}},$ and w_{opt} values of lateritic soil (LS). It was observed that the γ_{max} value of the soil decreased with the addition of 2, 4, 6, 8, and 10% WSA- lime mixture. This decrease can be due to the mixing soil with WSA-lime that has a lower specific gravity, as well as the way the WSA-lime surrounds and covers the soil, introducing larger grain sizes that create significant voids within the soil, resulting in decrease in density. Conversely, the increase in wopt value of soil with WSA- lime additions is due to the reduction in the amount of silt, clay fractions, and coarse materials with a large surface area, as these materials require more water. Furthermore, the qu of soil increased from 38.58 kPa to 129.63 kPa with an addition of 6% WSAlime. This increase can be explained by the formation of cementitious compounds between Ca (OH)₂ present in the soil and the pozzolans found in SA-lime [12]. Mohamed et al. (2023) found that adding 1% cement along with 10% resulted calcium FA-WSA significant in expansive soil. improvements in the strength of

Additionally, Ingabire et al. [85] found that incorporating 6% WSA and 9% rice husk improved qu, CBR, and compaction parameters of BCS. These modifications increase their suitability as a foundation material for construction. Numerous studies have highlighted the importance of using WSA to stabilize various soil types. For instance, Ojuri et al. [111] showed that adding 5% of WSA increased the CBR value of soil from 41 to 57%. Additionally, when 10% SA was applied, the CBR value further improved from 58 to 79%. This indicates that WSA is an effective soil amendment for enhancing the loadbearing capacity of soil. Abdulwahab et al. [2] noted that the inclusion of 10% WSA in the soil had significant effects. It increased the w_{opt} of the soil, decreased the γ_{max} value, and significantly improved the CBR value by 46.72%. Furthermore, Table 5 presents the results of experiments conducted on clay, organic, and silty, and sandy soils that were mixed with various proportions of WSA. The findings indicate that these mixtures positively stabilized affects the parameters of the stabilized soil, making it more friendly and suitable for engineering applications. Nath et al. [170] investigated the effects of adding various percentages (5, 7.5, 10, and 12.5%) of WSA to the low plasticity clay. The results indicated a reduction in both the PI and γ_{max} values. WSA provided optimal values for the qu, ϕ , wopt, LL, and PL of the soil. Additionally, WSA was shown to decrease the compression index (Cc) while increasing the void ratio (e₀). The addition of WSA influenced the behavior of the soil through various interactions among the particles. WSA contains significant amounts of silica (SiO₂), alumina (Al₂O₃), and calcium oxide (CaO), which contribute to pozzolanic reactions with clay minerals. Calcium oxide reacts to form calcium hydroxide (Ca (OH)₂), which then interacts with the silica and alumina to create effective cementitious compounds. These compounds bond with clay particles, reducing the PI by limiting particle mobility. Increased void content arises from insufficient interaction between the WSA and clay particles, leading to more bulged structure. The decreased Cc can be attributed to improved bonding between the clay and WSA particles, resulting in a more stable mixture. Figure 14 summarizes the qu values of lateritic soil (LS) mixed with various ratios of WSA. The results were influenced by the size of WSA used: Group A consisted of WSA passing through sieve N.200 (Ogunribido et al[163], 2012; Edeh et al. [40], while Group B included WSA passing through sieve N.40 [83]. For Group A, the addition of 2, 4, 6, 8, and 10% WSA decreased the q_u value of LS. When LS mixed with 10, 20, and 30% WSA, the qu value increased

with improvement of 28, 220, and 533%, respectively. However, at ratios of 40, 50, 60, 70, 80, and 90% WSA, the qu began to decline. For LS mixed WSA (group B), improvement of 224, 211, 157, and 172% were observed at 8, 12, 16, and 20% WSA, respectively. Fine WSA particles (Group A) possess a higher surface area, which enhances their ability to engage in effective pozzolanic interactions with clay minerals, leading to formation of valuable cementitious compounds. When WSA content decreases to 2-10%, these interactions become incomplete, resulting in increased voids that weaken the clay structure and reduce deformation. However, at optimal WSA levels of 10-30%, sufficient pozzolanic bonding occurs, promoting the interlocking of particles and increasing their qu values. When WSA content exceeds 40%, excess WSA disrupts particle cohesion. In contrast, coarser WSA particles (Group B) function as fine aggregates, improving the clay structure through mechanical interlocking rather than chemical bonding. Strength improves at 8-20% WSA content due to increased compaction and interlocking. The CBR values of clay soil mixed with WSA are presented in Figure 15. The CBR values of clay mixed with fine WSA showed improvements of 26, 43, and 51% at 2, 4, and 6% WSA, respectively. In sandy clay, the CBR values showed improvements of 5 and 27% at 4 and 6% WSA, respectively. However, both studies indicated a decline in CBR with an 8% addition of WSA. Suresh et al.[144] demonstrated that incorporating 10, 20, 30, and 40% of WSA led to a decrease the γ_{max} value of bentonite. This reduction can be attributed to the flocculation and agglomeration of the bentonite molecules caused by the exchange process of exchange with the Ca2+ ion present in WSA. As a result, the void spaces between the molecules increased, leading to a which reduction in density. The decrease may also be explained by the lower G_s of WSA. The w_{ont} value increased with the addition of 10% WSA but then decreased with higher percentages. The qu value of bentonite increased to 113, 117, and 139 kPa with the

addition of 10, 20, and 30% WSA, respectively, then

decreased with 40% WSA. The qu value continued to

increase over time due to the pozzolanic reactions.

Furthermore, the CBR value of bentonite under soaked

condition increased from 1.83 to 7.3% with addition of 24%

WSA. According to the Indian Roads Congress (IRC.,

2018), the CBR value should be greater than 5% for roads

that accommodate 450 commercial vehicles daily.

Therefore, the CBR value of bentonite mixed with 24%

WSA is suitable for use as a pavement subgrade.

International Journal of Innovative Research in Engineering and Management (IJIREM)

Table 5. Summary of various studies on soil mixed with tile and WSA content

Reverence	Soil type	WAS ratio (%)	Outcomes
Ogunribido. [163]	LS	2, 4, 6, 8, 10	LL, PI, PI, γ_{max} (-), w_{opt} (+), CBR (+) up to 6%, q_u , Su (-)
Barazesh et al.[20]	Clay	1, 4, 7, 10, 13, 19, 22, 25	LL, PL (-), PI (+)
El Halim et al [63]	Clay	1, 2, 5, 10, 15, 20	k _s (+), crack width, w _{opt} (-)
Edeh et al. [39]	LS	10, 20, 30, 40, 50, 60, 70, 80, 90	γ_{max} , LL, PL, PI (-), w_{opt} (+), CBR, q_{u} (+) up to 30%
Ilori et al.,[83]	LS	2, 6, 8, 12, 16, 20	PI, γ_{max} (-), w_{opt} (+), q_{u} (+) at 8 and 16%
Khan et al.[95]	Clay	2, 6, 10, 12	LL, k (-), C (+) at 2 and 10%, \phi (+) at 4 and 10%
Das & Paul.[36]	SP	0.5, 1, 1.5, 2, 2.5	k, γ _{max} (-), w _{opt} (+)
Emeh et al.[44]	СН	6, 12, 18, 24	Swell index (+), q_u , γ_{max} (+) at 18%, w_{opt} (+) at 6%
Butt et al [31]	CL	4, 8, 12	Su, q_u (+) up to 4%, LL, PL, CBR (+), γ_{max} (-), w_{opt} (+) up to 8%
Jasım et al [91]	MH	1, 2, 3, 5	γ_{max} , w_{opt} , LL, PL, PI (-), C (+) up to 3%
Akinwumi et al.[6]	СН	2, 4, 6, 8	q_u , γ_{max} , LL, PI, PI, Gs (-), w_{opt} , k $(+)$
Ikra et al. [177]	Clay	2, 4, 6, 8, 10, 12	γ_{max} (-), w_{opt} (+)
Nath et al., [170]	CL	5, 7.5, 10, 12.5	e_0 , ϕ , q_u , w_{opt} , LL, PL (+), γ_{max} , C_C , (-), C (+) up to 10%
Karim et al., [93]	CL	2, 4, 6, 8, 10	PL (+) at 8 and 10%, LL, PI, (-) at 6%, γ_{max} (-), w_{opt} (+), Su, q_{u} (+) up to 4%
Ikeagwuani et al [82]	СН	4, 8, 12, 16, 20	CBR, γ_{max} (+) up to 16%, w_{opt} (-)
Krishnan et al [97]	Clay	3, 5, 7, 9, 11	q _u (+) up to 9%
Ekinci et al.[42]	CL	5, 10	C, q _u (+) up to 5%
SHITAYE et al [137]	CH	5, 10, 15, 20	w_{opt} , Gs (+), γ_{max} , PI (-), CBR, q_u (+) up to 15%
Niyomukiza [172]	СН	3, 5, 7	PL (+), LL, PI, (-), γ_{max} (-), w_{opt} (+), CBR, Su, q_u (+) up to 3%
Sefene et al.[132]	СН	5, 10, 15, 20	w_{opt} , PI (-), γ_{max} , q_u (+) up to 15%, CBR (+)
Owoyemi.[116]	ML	2.5, 5, 7.5, 10, 12.5, 15	LL, PI, PI (-), γ _{max} (-), w _{opt} (+), CBR, q _u (+) up to 7.5%
Oguche et al.[171]	Clay	2, 4, 6, 8, 10	LL, PI (+), PI, Gs (-), γ_{max} (-), w_{opt} (+), CBR, q_u (+) up to 6%
Niyomukiza & Yasir., [173]	СН	2, 4, 6, 10	LL, PI, PI (-), CBR (+) up to 6%
Suresh et al [144]	BT	10, 20, 30, 40	γ_{max} (-), w_{opt} (+), q_{u} (+) up to 30%
Anuar et al.[13]	OS	12, 15, 18	γ_{max} (-), w_{opt} (+), q_u (+) up to 12%

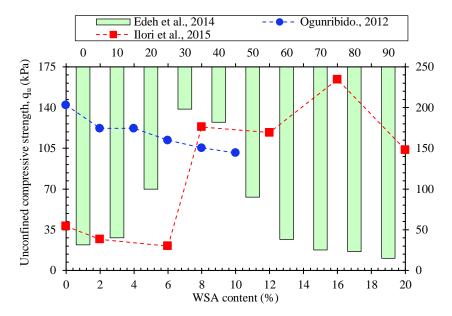


Figure 14: The q_u values of LS mixed with WSA content.

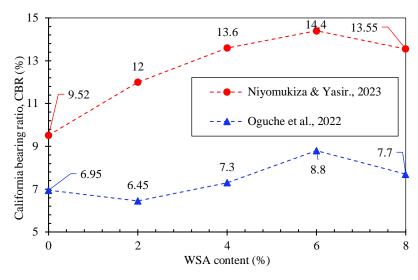


Figure 15: The CBR values of clay soil mixed with WSA content.

D. Ground Granulated Blast Furnace Slag Waste

Ground granulated blast furnace slag (GGBS) is a byproduct of blast furnace ironmaking. It is known for its low energy consumption and CO₂ emissions [53]. The effectiveness of GGBS in soil stabilization is well documented, and its use can help mitigate environmental issues related to waste disposal [59] [35] [118] [133] [55] [122] [1]. The utilization of GGBS can also reduce the carbon footprint and promote sustainability [153] [147]. Table 6 concludes the values of soil parameters affected by the addition of 1-100% GGBS. For example, Mujtaba et al. [174] conducted a comprehensive study on CH and CL soil mixed with 5-50% GGBS. The results showed that at 50% GGBS, both samples (CH and CL) showed an increase in γ_{max} values and CBR (up to 11.5% for CH and up to 10.7% for CL). Furthermore, there was a decrease in swelling potential (down to 2%) and a reduction in the w_{opt}. Additionally, the qu value increased by 35% with the addition of 30% GGBS after 28 days of curing. GGBS is a stabilizer that creates effective cementitious compounds

due to its silicate and alumino-silicate content. These components play a crucial role in the pozzolanic reaction, forming calcium C-S-H and C-A-H. This process enhances the soil structure, resulting in an increase in the γ_{max} (also due to high Gs value of GGBS) and CBR of the mixture. However, GGBS is characterized by its high-water absorption, which reduces the w_{opt} of the clay and reduces the swelling potential. The increase in qu values is attributed to the reinforcement of the soil matrix by gel-forming materials. This contributes to improved soil cohesion and resistance to deformation. However, the results consistently showed that all values of CH were higher than those of CL results. This can be attributed to the well-known chemical composition of high-plasticity clay, which contains the highest expansive clay minerals such as montmorillonite. Montmorillonite has a high-water absorption and swelling capacity. Additionally, it also has a larger surface area and ion exchange capacity, allowing for increased chemical reactions with the GGBS stabilizer.

Table 6. Summary of various studies on soil mixed with tile and GGBS content

Reverence	Soil type	GGBS ratio (%)	Outcomes
Ouf. [114]	Clay	2, 4, 6, 8, 10	LL, PI, γ_{max} (-),PL, w_{opt} (+), q_{u} (+) up 4%
Kumar & Sivapullaiah.[98]	BCS	10, 20, 30, 40, 50, 60, 70, 80, 90, 100	w_{opt} (-), γ_{max} , q_u (+) at 50%
Manjunath et al [20]	ML	10, 20, 30	$q_{\mathrm{u}}\left(+ ight)$
Yadu & Tripathi.[152]	CI-MI	3, 6, 9, 12	Swell, PI, w_{opt} (-), γ_{max} (+), q_u , CBR (+) up to 6%
Sivrikaya et al [138]	CL	5, 10, 15, 20, 30, 50	LL, PI (-), PL, γ _{max} , w _{opt} (+)
Sivrikaya et al.[138]	BT	5, 10, 15, 20, 30, 50	LL, PI (-), PL, γ _{max} , w _{opt} (+)
Rani et al.[128]	СН	10, 20, 30, 40, 50, 60	w _{opt} , LL, PL, PI (-), γ _{max} (+), q _u (+) up 40%
Mujtaba et al.[174]	СН	5, 10, 15, 20, 30, 40, 50	Cc, w_{opt} , LL, PI (-), γ_{max} , CBR (+), q_u (+) up to 30%
Mujtaba et al.[174]	CL	5, 10, 15, 20, 30, 40, 50	Cc, w_{opt} , LL, PI (-), γ_{max} , CBR (+), q_u (+) up to 30%
Bilgen et al.[26]	BT	5	Cc (-), q _u (+)
Zhao et al.[158]	Clay	1, 3, 5, 7, 10	$q_{\mathrm{u}}\left(+ ight)$
Yunus et al [155]	Peat soil	5, 15, 25, 50	w_{opt} , LL (-), γ_{max} (+), q_{u} (+) up 15%
Havanagi et al. [58]	BCS	5, 10, 15, 20, 25, 30	w_{opt} , LL, PI, PL (-), γ_{max} , CBR (+), q_u (+) up 25%

Yunus et al. [155] studied the effect of GGBS on peat soil. The outcomes indicated that the γ_{max} increased by 0.6, 19, 22, and 32.5% at 5, 15, 25, and 50% GGBS, respectively. In contrast, the wopt showed a decrease at the same ratios of GGBS. The qu value improved by 160, 248, 220, and 80%, respectively, with the highest value observed at 15% GGBS. Likewise, Havanagi et al. [58] incorporated 5, 10, 15, 20, 25, and 30% GGBS into BCS. The results showed a clear decrease in the woot, LL, PL, and PI values, while there was an increase in the γ_{max} , CBR, and UCS values. The common trend in the $q_{\boldsymbol{u}}$ vales was an increase in most soil type that mixed with GGBS content, as shown in Figure 16. Besides, the highest UCS values were achieved in clay soil compared to silt, peat, and bentonite soil. significant improvement in q_u of clayey soils compared to other soils can be attributed to their mineral properties. These properties allow for a distinct interaction with the GGBS and the formation of strong cementitious compounds that reinforce the clay matrix. For instance, while bentonite contains montmorillonite, its different swelling properties hinder its ability to interact adequately with the GGBS, resulting in less reinforcement compared to clay. Furthermore, the inclusion of GGBS resulted in a decrease in the LL and PI values of various soil types, as illustrated in Figure 17 and 18. This reduction is attributed to the pozzolanic reaction, in which gels form and bind the soil particles together. This binding effect reduces the soil's plasticity and ability to absorb water, which is evident in the decrease in the liquid limit and plasticity index.

On the other hand, some studies investigate the effects of mixing GGBS with other stabilizers in soil. For example, Wild (1998) found that GGBS can effectively replace lime in stabilizing clay soils, particularly when combined with gypsum. The study suggests that 1.5 GGBS /lime yields the maximum strength for higher stabilizer contents, indicating the potential of GGBS as a binder for soil stabilization in foundation layers for structures such as highways. Yi et al. [154] conducted a study on the utilization of alkali activated and GGBS to stabilize marine soft clay. Their findings suggest that Na₂SO₄-clay-GGBS exhibited superior binding properties, resulting in a strength increase of at least double in comparison to that of Portland cement stabilized clay. Fasihnikoutalab et al. [46] demonstrated that after 90 days, the soil treated with 20% GGBS showed a 142 kPa increase in q_u value. Additionally, the addition of 20% olivine increased the qu value to 444 kPa, and the incorporation of 20% NaOH into the olivine-GGBS-treated soil resulted in a q_u value exceeding 6000 kPa in 90 days. These results demonstrate the effectiveness of GGBS in stabilizing soil properties, such as strength, plasticity, and compressive strength, making it an effective binder for construction materials, including highways and foundation layers. Additionally, its environmental benefits, which include reducing the need for traditional stabilizers like lime and cement, contribute to sustainability through utilizing an industrial byproduct and decreasing the carbon footprint of construction.

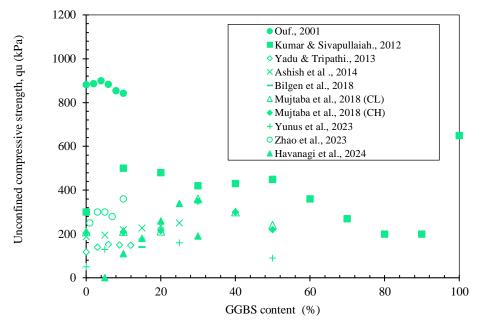


Figure 16: The effect of GGBS on qu of soil.

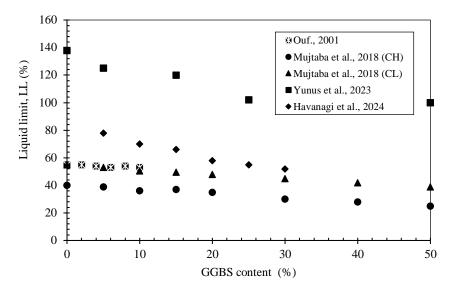


Figure 17: The effect of GGBS on LL of soil.

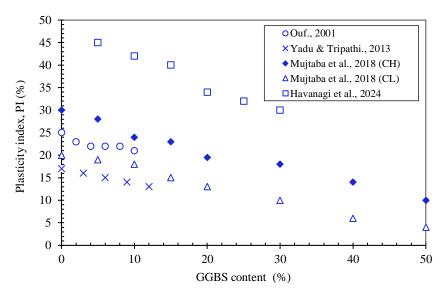


Figure 18: The effect of GGBS on PI of soil.

Previous results have demonstrated the varied and diverse effectiveness of using various wastes in soil improvement. However, most studies focus primarily on demonstrating improvements in geotechnical properties after the addition of various materials, without adequately explaining the observed variations in the behavior of these materials in other soil types. It is important to note that dealing with one type of soil may yield different results than others. For example, soil preparation through crushing and sieving may lead to discrepancies in previous results. Therefore, it is essential to develop a standardized methodology that clearly demonstrates how the use of these wastes affects geotechnical properties in different soil types and at specific particles sizes. Furthermore, soils under different moisture conditions may yield different results and variations in their durability and behavior. Furthermore, no adequate and clear study has been presented on the use of these wastes in soil under various processing conditions, such as immersion in water, at room temperature, in an oven, or in a microwave, based on the practical application of these mixtures. Moreover, relying heavily on laboratory results without actual field testing leaves a gap between theoretical and

practical application, as environmental conditions can significantly influence laboratory results.

Determining the effective percentages of each waste material in soil is crucial for future practical applications. Therefore, a complete range of replacements (0-100%) in soil need to be studied under various conditions (water content, curing method and period). While some research results have proposed the use of some of these materials in sustainable engineering applications, but the availability, processing, transportation and design costs of these materials were not emphasized. Regarding environmental aspect, most of the results were ignored or only superficially addressed. There has been no real assessment of the safety of these waste materials when used in the field, particularly BA and FA, because they contain heavy metals such as lead, arsenic, or chromium, which may behave differently under certain conditions. Environmental contamination or toxicity tests, such as TCLP, SPLP, or leachability tests, should also be considered.

III. CONCLUSION AND RECOMMENDATIONS

This review investigated the effectiveness of various waste materials in stabilizing soil properties and identified the optimum levels for each. BA demonstrated the best performance at 50% combined with 12% lime, which improved CBR, pH, and plasticity values. FA showed high effectiveness at 25-30% content, improving various soil properties. RHA mixed with lime or cement at 10-15% significantly improved qu and moisture content. CHA at 15-20% content significantly enhanced soil strength and reduced swelling. Furthermore, WA was most effective at 6-10% content, leading to substantial improvements in both CBR and qu values. GGBS also contributed to enhanced strength and reduced swelling at 25-30% content. These improvements can be attributed to pozzolanic reactions, where the silica and alumina in the soil additives react with calcium and other soil materials to form strong cementitious compounds such as C-S-H and C-A-H, resulting in sustainable soil strengthening.

In the future, geotechnical researchers seeking to utilize sustainable and environmentally friendly materials for soil stabilization should focus on FA, RHA, and GGBS due to high pozzolanic reactivity and continuous improvement in soil strength and durability. These materials are highly effective for reinforcing subgrade and pavement layers. Additionally, BA used up to 50% and CHA at 15-20% show great promise as sustainable stabilizers for improving soil strength and reducing plasticity, especially when mixed with lime or gypsum. Mixing these ashes with alkaline activators such as sodium silicate, bio-enzymes, or nano-silica can further accelerate and enhance pozzolanic reactions, improve bonding with soil particles, and form strong composites. Meanwhile, incorporating natural fibers like coconut or jute can enhance tensile strength and improve soil cracking resistance. It is strongly recommended that further exploration of soil stabilization compounds using industrial by-products and emerging environmentally friendly binders is undertaken, thus achieving an environmentally friendly alternative that achieves high soil performance and reduces environmental impact. The use of these wastes in real-world engineering applications is both important and effective. For instance, they can enhance 3D- soil printing, thereby facilitating the construction of earthen buildings. Additionally, it is possible to investigate the impact of some of these waste materials on the properties of various building materials, such as their use in the manufacture of blocks or building stones.

ACKNOWLEDGEMENTS

The PI would like to acknowledge their own efforts in conducting the research, writing, and proofreading the article.

DECLARATION OF INTEREST

The PI have no conflicts of interest to declare. All co-author (PI) have observed and affirmed the contents of the paper and there is no financial interest to report.

Waleed Zaid (PI): Conceptualization, Data curation, Visualization, writing original draft, methodology, investigation, formal analysis, validation, supervision,

project administration, funding acquisition, resources, software, writing, review and editing.

DATA AVAILABILITY

The datasets generated analyzed during this present study are available from the corresponding author upon request.

FUNDING

This research did not receive any specific grant from any public or private funding agencies.

ABBREVIATIONS

BA	Bottom ash	
FA	Fly ash	
RHA	Rusk waste ash	
CHA	Coffee husk ash	
WSA	Wood sawdust ash	
GGBS	Ground granulated blast furnace slag	
CH	High plasticity clay	
CL	Low plasticity clay	
MH	High plasticity silt	
BCS	Black cotton soil	
SC	Clayey sand	
OL	Low plasticity organic	
CI	Clay of intermediate plasticity	
RCS	Red coffee soil	
CL-ML	Low plasticity clay-silt	
G	Gravel soil	
ES	Expansive soil	
OS	Organic soil	
LS	Lateritic soil	
SP	Poor sand	
BT	Bentonite clay	
UCS	Unconfined compressive strength test	
q_{u}	Unconfined compressive strength	
CBR	California bearing ratio	
γ_{max}	Maximum dry density	
W _{opt}	Optimum moisture content	
k	Coefficient of permeability	
LL	Liquid limit	
PL	Plastic limit	
PI	Plasticity index	
SL	Shrinkage limit	
Gs	Specific gravity	
Su	Undrained shear strength	
C	Cohesion	
ф	Internal angle of friction	
Cs	Swelling index	
Сс	Compression index	
FSI	Free swell index	
e ₀	Initial void ratio	

REFERENCES

- [1] Abdila, S.R., Abdullah, M.M.A.B., Ahmad, R., Burduhos Nergis, D.D., Rahim, S.Z.A., Omar, M.F. and Syafwandi, "Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A review," *Materials*, vol. 15, no. 1, p. 375, 2022. Available from: https://doi.org/10.3390/ma15010375
- [2] Abdulwahab, R., Ibitoye, B.A., Akinleye, M.T. and Ahmed, N.T., "The effects of wood ash on the geotechnical properties of lateritic soil," USEP: Journal of Research Information in

- Civil Engineering, vol. 15, no. 1, pp. 1986–1995, 2018. Available from: https://tinyurl.com/4bpjh8jj
- [3] Adajar, M.A.Q., Aquino, C.J.P., Martin, C.P.H. and Urieta, D.K.G., "Investigating the effectiveness of rice husk ash as stabilizing agent of expansive soil," *GEOMATE Journal*, vol. 16, no. 58, pp. 33–40, 2019. Available from: https://geomatejournal.com/geomate/article/view/2708
- [4] Ahmed, A.G.A., "Fly ash utilization in soil stabilization," in *Proceedings of the International Conference on Civil, Biological and Environmental Engineering*, pp. 76–78, May 2014. Available from: https://iicbe.org/upload/3136C514601.pdf
- [5] Akbulut, N. and Cabalar, A.F., "Applications of the oedometer, compaction, permeability, and CBR tests to the study of sand with fly ash-lime," 2013. Available from: https://tinyurl.com/ys28y5dz
- [6] Akinwumi, I.I., Ojuri, O.O., Ogbiye, A.S. and Booth, C.A., "Engineering properties of tropical clay and bentonite modified with sawdust," *Acta Geotechnica Slovenica*, vol. 14, no. 2, pp. 47–56, 2017. Available from: https://tinyurl.com/4c56jkwr
- [7] Akinyele, J.O., Salim, R.W., Oikelome, K.O. and Olateju, O.T., "The use of rice husk ash as a stabilizing agent in lateritic clay soil," *International Journal of Civil and Environmental Engineering*, vol. 9, no. 11, pp. 1418–1422, 2015. Available from: https://tinyurl.com/5xk9xpcj
- [8] Al-Alawi, H.S.K., Al-Masqari, A.R.H., Chowdhury, M.S., Al Khalil, A. and Umar, A.A., "Stabilization of Muscat's expansive soil using bottom ash from medical waste incineration," *E3S Web of Conferences*, vol. 579, p. 02003, 2024. Available from: https://doi.org/10.1051/e3sconf/202457902003
- [9] Alhassan, M., "Potentials of rice husk ash for soil stabilization," Assumption University Journal of Technology, vol. 11, no. 4, pp. 246–250, 2008. Available from: https://tinyurl.com/52w79hj9
- [10] Ali, F.H., Adnan, A. and Choy, C.K., "Use of rice husk ash to enhance lime treatment of soil," *Canadian Geotechnical Journal*, vol. 29, no. 5, pp. 843–852, 1992. Available from: https://cdnsciencepub.com/doi/abs/10.1139/t92-091
- [11] Al-Obaydi, M.A., Abdulnafaa, M.D., Atasoy, O.A. and Cabalar, A.F., "Improvement in field CBR values of subgrade soil using construction-demolition materials," *Transportation Infrastructure Geotechnology*, vol. 9, no. 2, pp. 185–205, 2022. Available from: https://link.springer.com/article/10.1007/s40515-021-00170-x
- [12] Amadi, A.A., "Utilisation of fly ash to improve the engineering properties of lateritic soil," *International Journal of Materials Engineering Innovation*, vol. 3, no. 1, pp. 78–88, 2012. Available from: https://doi.org/10.1504/IJMATEI.2012.044451
- [13] Anuar, N.H.H.M., Hasbollah, D.Z.A. and Zukri, A., "Stabilizing peat soil using sawdust ash," *Smart and Green Materials*, vol. 1, no. 1, pp. 1–12, 2024. Available from: https://doi.org/10.70028/sgm.v1i1.2
- [14] Anupam, A.K., Kumar, P. and Ransinchung, G.D., "Use of various agricultural and industrial waste materials in road construction," *Procedia – Social and Behavioral Sciences*, vol. 104, pp. 264–273, 2013. Available from: https://doi.org/10.1016/j.sbspro.2013.11.119
- [15] Anupam, A.K., Kumar, P. and Ransingchung Rn, G.D., "Performance evaluation of structural properties for soil stabilised using rice husk ash," *Road Materials and Pavement Design*, vol. 15, no. 3, pp. 539–553, 2014. Available from: https://doi.org/10.1080/14680629.2014.891533
- [16] Atahu, M.K., "The effect of coffee husk ash on geotechnical properties of expansive soil" [Doctoral thesis, Universität Rostock], 2020. Available from: https://tinyurl.com/56bfwabp
- [17] Atahu, M.K., Saathoff, F. and Gebissa, A., "Strength and compressibility behaviors of expansive soil treated with coffee

- husk ash," *Journal of Rock Mechanics and Geotechnical Engineering*, vol. 11, no. 2, pp. 337–348, 2019. Available from: https://doi.org/10.1016/j.jrmge.2018.11.004
- [18] Aziz, M., Saleem, M. and Irfan, M., "Engineering behaviour of expansive soils treated with rice husk ash," *Geomechanics* and Engineering, vol. 8, no. 2, pp. 173–186, 2015. Available from: http://dx.doi.org/10.12989/gae.2015.8.2.173
- [19] Bamigboye, G.O., Bassey, D.E., Olukanni, D.O., Ngene, B.U., Adegoke, D., Odetoyan, A.O. and Nworgu, A.T., "Waste materials in highway applications: An overview on generation and utilization implications on sustainability," *Journal of Cleaner Production*, vol. 283, p. 124581, 2021. Available from: https://doi.org/10.1016/j.jclepro.2020.124581
- [20] Barazesh, A., Saba, H., Rad, M.Y. and Gharib, M., "Effect of wood ash admixture on clay soils in Atterberg test," *International Journal of Basic Sciences & Applied Research*, vol. 1, no. 4, pp. 83–89, 2012. Available from: https://tinyurl.com/yckb4tt9
- [21] Basha, E.A., Hashim, R., Mahmud, H.B. and Muntohar, A.S., "Stabilization of residual soil with rice husk ash and cement," *Construction and Building Materials*, vol. 19, no. 6, pp. 448–453, 2005. Available from: https://doi.org/10.1016/j.conbuildmat.2004.08.001
- [22] Behak, L., "Soil stabilization with rice husk ash," *Rice: Technology and Production*, p. 29, 2017. Available from: https://doi.org/10.5772/66311
- [23] Bhowmik, P., Hoque, M.R. and Samonta, S., "Stabilization of expansive soil by using fly ash and coir fiber," *Journal of Advances in Geotechnical Engineering*, vol. 7, no. 3, n.d. Available from: https://doi.org/10.5281/zenodo.13841417
- [24] Bhurtel, A. and Eisazadeh, A., "Strength and durability of bottom ash and lime stabilized Bangkok clay," KSCE Journal of Civil Engineering, vol. 24, no. 2, pp. 404–411, 2020. Available from: https://doi.org/10.1007/s12205-019-0850-3
- [25] Bhuvaneshwari, S., Robinson, R.G. and Gandhi, S.R., "Stabilization of expansive soils using fly ash," Fly Ash India, vol. 8, no. 5, pp. 1–10, 2005. Available from: https://tinyurl.com/2wx53kj2
- [26] Bilgen, G., Çapar, Ö., Bozacıoğlu, D. and Dağlı, E., "Effect of blast furnace slag on strength and compressibility of bentonite clay," in *Proceedings of the 13th International Congress on Advances in Civil Engineering*, 2018.
- [27] Bolden, J., Abu-Lebdeh, T. and Fini, E., "Utilization of recycled and waste materials in various construction applications," *American Journal of Environmental Science*, vol. 9, no. 1, pp. 14–24, 2013. Available from: https://doi.org/10.3844/ajessp.2013.14.24
- [28] Bose, B., "Geo engineering properties of expansive soil stabilized with fly ash," *Electronic Journal of Geotechnical Engineering*, vol. 17, no. 1, pp. 1339–1353, 2012.
- [29] Brooks, R., Udoeyo, F.F. and Takkalapelli, K.V., "Geotechnical properties of problem soils stabilized with fly ash and limestone dust in Philadelphia," *Journal of Materials* in Civil Engineering, vol. 23, no. 5, pp. 711–716, 2011. Available from: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214
- [30] Brooks, R.M., "Soil stabilization with flyash and rice husk ash," *International Journal of Research and Reviews in Applied Sciences*, vol. 1, no. 3, pp. 209–217, 2009. Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/20113107
- [31] Butt, W.A., Gupta, K. and Jha, J.N., "Strength behavior of clayey soil stabilized with saw dust ash," *International Journal of Geo-Engineering*, vol. 7, pp. 1–9, 2016. Available from: https://doi.org/10.1186/s40703-016-0032-9
- [32] Cabalar, A.F. and Demir, S., "Geotechnical properties of a bentonite treated with waste glass grains," *Arabian Journal of Geosciences*, vol. 15, no. 9, p. 880, 2022. Available from: https://doi.org/10.1007/s12517-022-10169-4

- [33] Cabalar, A.F., Hassan, D.I. and Abdulnafaa, M.D., "Use of waste ceramic tiles for road pavement subgrade," *Road Materials and Pavement Design*, vol. 18, no. 4, pp. 882–896, 2017. Available from: https://doi.org/10.1080/14680629.2016.1194884
- [34] Cabalar, A.F., Hayder, G., Abdulnafaa, M.D. and Isik, H., "Aluminum waste in road pavement subgrade," *Ingeniería e Investigación*, vol. 40, no. 1, pp. 8–16, 2020.
- [35] Celik, E. and Nalbantoglu, Z., "Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils," *Engineering Geology*, vol. 163, pp. 20–25, 2013. Available from: https://doi.org/10.1016/j.enggeo.2013.05.016
- [36] Das, A. and Paul, S., "Effect of sawdust as admixture on silty sand soil," in *National Level Conference on Engineering Problems and Application of Mathematics*, 2016. Available from: https://tinyurl.com/msfdaz5m
- [37] Devi, C.R., Surendhar, S., Vijaya Kumar, P. and Sivaraja, M., "Bottom ash as an additive material for stabilization of expansive soil," *International Journal of Engineering Technology*, vol. 4, no. 2, pp. 174–180, 2018. Available from: https://tinyurl.com/5dpkpy3e
- [38] Dissanayake, T.B.C.H., Senanayake, S.M.C.U. and Nasvi, M.C.M., "Comparison of the stabilization behavior of fly ash and bottom ash treated expansive soil," *Engineer: Journal of* the Institution of Engineers, Sri Lanka, vol. 50, no. 1, 2017. Available from: https://doi.org/10.4038/engineer.v50i1.7240
- [39] Edeh, J.E., Agbede, I.O. and Tyoyila, A., "Evaluation of sawdust ash-stabilized lateritic soil as highway pavement material," *Journal of Materials in Civil Engineering*, vol. 26, no. 2, pp. 367–373, 2014. Available from: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000795
- [40] Edeh, J.E., Eberemu, A.O. and Agnes, O., "Lateritic soil stabilization of reclaimed asphalt pavement as flexible highway pavement materials," *Advanced Materials Research*, vol. 367, pp. 3–11, 2012. Available from: https://doi.org/10.4028/www.scientific.net/AMR.367.3
- [41] Eid, N., Zaid, W. and Günal, A.Y., "Strengthening concrete characteristics through fiber additives: A comprehensive review," *International Journal of Innovative Research in Engineering and Management*, vol. 11, no. 3, pp. 10–55524, 2024. Available from: https://doi.org/10.55524/ijirem.2024.11.3.8
- [42] Ekinci, A., Hanafi, M. and Aydin, E., "Strength, stiffness, and microstructure of wood-ash stabilized marine clay," *Minerals*, vol. 10, no. 9, p. 796, 2020. Available from: https://doi.org/10.3390/min10090796
- [43] El Halim, A.A. and El Baroudy, A.A., "Influence addition of fine sawdust on the physical properties of expansive soil in the Middle Nile Delta, Egypt," *Journal of Soil Science and Plant Nutrition*, vol. 14, no. 2, pp. 483–490, 2014. Available from: https://doi.org/10.4067/S0718-95162014005000038
- [44] Emeh, C. and Igwe, O., "The combined effect of wood ash and lime on the engineering properties of expansive soils," *International Journal of Geotechnical Engineering*, vol. 10, no. 3, pp. 246–256, 2016. Available from: https://doi.org/10.1080/19386362.2015.1125412
- [45] Eskioglou, P. and Oikonomou, N., "Protection of environment by the use of fly ash in road construction," *Global NEST Journal*, vol. 10, no. 1, pp. 108–113, 2008. Available from: https://doi.org/10.30955/gnj.000442
- [46] Fasihnikoutalab, M.H., Pourakbar, S., Ball, R.J., Unluer, C. and Cristelo, N., "Sustainable soil stabilisation with ground granulated blast-furnace slag activated by olivine and sodium hydroxide," *Acta Geotechnica*, vol. 15, pp. 1981–1991, 2020. Available from: https://link.springer.com/article/10.1007/s11440-019-00884-
- [47] Fattah, M.Y., Rahil, F.H. and Al-Soudany, K.Y., "Improvement of clayey soil characteristics using rice husk ash," *Journal of Civil Engineering and Urbanism*, vol. 3, no.

- 1, pp. 12–18, 2013. Available from: https://tinyurl.com/mr2398mm
- [48] Fauzi, A., Nazmi, W.M. and Fauzi, U.J., "Subgrade stabilization of Kuantan Clay using fly ash and bottom ash," *Proceedings of the 8th International Conference on Geotechnical and Transportation Engineering Geotropika*, 2010. Available from: https://tinyurl.com/ydtj6t5a
- [49] Forteza, R., Far, M., Seguí, C. and Cerdá, V., "Characterization of bottom ash in municipal solid waste incinerators for its use in road base," *Waste Management*, vol. 24, no. 9, pp. 899–909, 2004. Available from: https://doi.org/10.1016/j.wasman.2004.07.004
- [50] Gaur, A., Mathur, N. and Somani, P., "Experimental investigation of bottom ash as a capable soil stabilizer," *IOP Conference Series: Materials Science and Engineering*, vol. 872, no. 1, p. 012138, 2020. Available from: https://doi.org/10.1088/1757-899X/872/1/012138
- [51] Gaur, V.K., Sharma, P., Sirohi, R., Awasthi, M.K., Dussap, C.G. and Pandey, A., "Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review," *Journal of Hazardous Materials*, vol. 398, p. 123019, 2020. Available from: https://doi.org/10.1016/j.jhazmat.2020.123019
- [52] Giusti, L., "A review of waste management practices and their impact on human health," *Waste Management*, vol. 29, no. 8, pp. 2227–2239, 2009. Available from: https://doi.org/10.1016/j.wasman.2009.03.028
- [53] Goodarzi, A.R. and Movahedrad, M., "Stabilization/solidification of zinc-contaminated kaolin clay using ground granulated blast-furnace slag and different types of activators," *Applied Geochemistry*, vol. 81, pp. 155–165, 2017. Available from: https://doi.org/10.1016/j.apgeochem.2017.04.014
- [54] Hamer, G., "Solid waste treatment and disposal: effects on public health and environmental safety," *Biotechnology Advances*, vol. 22, no. 1–2, pp. 71–79, 2003. Available from: https://doi.org/10.1016/j.biotechadv.2003.08.007
- [55] Hasan, U., Chegenizadeh, A., Budihardjo, M.A. and Nikraz, H., "Experimental evaluation of construction waste and ground granulated blast furnace slag as alternative soil stabilisers," *Geotechnical and Geological Engineering*, vol. 34, pp. 1707–1722, 2016. Available from: https://doi.org/10.1007/s10706-016-9983-z
- [56] Hasim, A.M., Shahid, K.A., Ariffin, N.F., Nasrudin, N.N. and Zaimi, M.N.S., "Properties of high-volume coal bottom ash in concrete production," *Materials Today: Proceedings*, vol. 48, pp. 1861–1867, 2022. Available from: https://doi.org/10.1016/j.matpr.2021.09.250
- [57] Hatmoko, D.D., Rifaâ, A. and Ismanti, S., "Effect of using lime and fly ash as a cement substitute for soil stability," *KURVATEK*, vol. 9, no. 1, pp. 45–54, 2024. Available from: https://doi.org/10.33579/krvtk.v9i1.4834
- [58] Havanagi, V.G., Sinha, A.K., Kumar, A. and Kanaujia, V.K., "Ground granulated blast furnace slag as a soil stabilizer for road construction," *Indian Highways*, p. 17, 2024. Available from: https://tinyurl.com/253jzy73
- [59] Higgins, D.D., "Soil stabilisation with ground granulated blastfurnace slag," *UK Cementitious Slag Makers Association* (*CSMA*), vol. 1, p. 15, 2005. Available from: https://tinyurl.com/2pjsthc5
- [60] Hwang, C.L. and Chandra, S., "The use of rice husk ash in concrete," in Waste Materials Used in Concrete Manufacturing, pp. 184–234, William Andrew Publishing, 1996. Available from: https://doi.org/10.1016/B978-081551393-3.50007-7
- [61] N. Eid, W. Zaid, and A. Y. Günal, "Strengthening concrete characteristics through fiber additives: A comprehensive review," *International Journal of Innovative Research in Engineering and Management*, vol. 11, no. 3, pp. 10–55524, 2024. Available from: https://doi.org/10.55524/ijirem.2024.11.3.8

- [62] A. Ekinci, M. Hanafi, and E. Aydin, "Strength, stiffness, and microstructure of wood-ash stabilized marine clay," *Minerals*, vol. 10, no. 9, p. 796, 2020. Available from: https://doi.org/10.3390/min10090796
- [63] A. A. El Halim and A. A. El Baroudy, "Influence addition of fine sawdust on the physical properties of expansive soil in the Middle Nile Delta, Egypt," *Journal of Soil Science and Plant Nutrition*, vol. 14, no. 2, pp. 483–490, 2014. Available from: https://doi.org/10.4067/S0718-95162014005000038
- [64] C. Emeh and O. Igwe, "The combined effect of wood ash and lime on the engineering properties of expansive soils," *International Journal of Geotechnical Engineering*, vol. 10, no. 3, pp. 246–256, 2016. Available from: https://doi.org/10.1080/19386362.2015.1125412
- [65] P. Eskioglou and N. Oikonomou, "Protection of environment by the use of fly ash in road construction," *Global NEST Journal*, vol. 10, no. 1, pp. 108–113, 2008. Available from: https://doi.org/10.30955/gnj.000442
- [66] M. H. Fasihnikoutalab, S. Pourakbar, R. J. Ball, C. Unluer, and N. Cristelo, "Sustainable soil stabilisation with ground granulated blast-furnace slag activated by olivine and sodium hydroxide," *Acta Geotechnica*, vol. 15, pp. 1981–1991, 2020. Available from: https://link.springer.com/article/10.1007/s11440-019-00884-
- [67] M. Y. Fattah, F. H. Rahil, and K. Y. Al-Soudany, "Improvement of clayey soil characteristics using rice husk ash," *Journal of Civil Engineering and Urbanism*, vol. 3, no. 1, pp. 12–18, 2013. Available from: https://tinyurl.com/mr2398mm
- [68] A. Fauzi, W. M. Nazmi, and U. J. Fauzi, "Subgrade stabilization of Kuantan Clay using fly ash and bottom ash," Proceedings of the 8th International Conference on Geotechnical and Transportation Engineering Geotropika, 2010. Available from: https://tinyurl.com/ydtj6t5a
- [69] R. Forteza, M. Far, C. Seguí, and V. Cerdá, "Characterization of bottom ash in municipal solid waste incinerators for its use in road base," *Waste Management*, vol. 24, no. 9, pp. 899–909, 2004. Available from: https://doi.org/10.1016/j.wasman.2004.07.004
- [70] A. Gaur, N. Mathur, and P. Somani, "Experimental investigation of bottom ash as a capable soil stabilizer," *IOP Conference Series: Materials Science and Engineering*, vol. 872, no. 1, p. 012138, 2020. Available from: https://doi.org/10.1088/1757-899X/872/1/012138
- [71] V. K. Gaur, P. Sharma, R. Sirohi, M. K. Awasthi, C. G. Dussap, and A. Pandey, "Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review," *Journal of Hazardous Materials*, vol. 398, p. 123019, 2020. Available from: https://doi.org/10.1016/j.jhazmat.2020.123019
- [72] L. Giusti, "A review of waste management practices and their impact on human health," *Waste Management*, vol. 29, no. 8, pp. 2227–2239, 2009. Available from: https://doi.org/10.1016/j.wasman.2009.03.028
- [73] A. R. Goodarzi and M. Movahedrad, "Stabilization/solidification of zinc-contaminated kaolin clay using ground granulated blast-furnace slag and different types of activators," *Applied Geochemistry*, vol. 81, pp. 155–165, 2017. Available from: https://doi.org/10.1016/j.apgeochem.2017.04.014
- [74] G. Hamer, "Solid waste treatment and disposal: effects on public health and environmental safety," *Biotechnology Advances*, vol. 22, no. 1–2, pp. 71–79, 2003. Available from: https://doi.org/10.1016/j.biotechadv.2003.08.007
- [75] U. Hasan, A. Chegenizadeh, M. A. Budihardjo, and H. Nikraz, "Experimental evaluation of construction waste and ground granulated blast furnace slag as alternative soil stabilisers," *Geotechnical and Geological Engineering*, vol. 34, pp. 1707– 1722, 2016. Available from: https://doi.org/10.1007/s10706-016-9983-z

- [76] A. M. Hasim, K. A. Shahid, N. F. Ariffin, N. N. Nasrudin, and M. N. S. Zaimi, "Properties of high-volume coal bottom ash in concrete production," *Materials Today: Proceedings*, vol. 48, pp. 1861–1867, 2022. Available from: https://doi.org/10.1016/j.matpr.2021.09.250
- [77] D. D. Hatmoko, A. Rifaâ, and S. Ismanti, "Effect of using lime and fly ash as a cement substitute for soil stability," *KURVATEK*, vol. 9, no. 1, pp. 45–54, 2024. Available from: https://doi.org/10.33579/krvtk.v9i1.4834
- [78] V. G. Havanagi, A. K. Sinha, A. Kumar, and V. K. Kanaujia, "Ground granulated blast furnace slag as a soil stabilizer for road construction," *Indian Highways*, p. 17, 2024. Available from: https://tinyurl.com/253jzy73
- [79] D. D. Higgins, "Soil stabilisation with ground granulated blastfurnace slag," *UK Cementitious Slag Makers Association* (*CSMA*), vol. 1, p. 15, 2005. Available from: https://tinyurl.com/2pjsthc5
- [80] C. L. Hwang and S. Chandra, "The use of rice husk ash in concrete," in Waste Materials Used in Concrete Manufacturing, pp. 184–234. William Andrew Publishing, 1996. Available from: https://doi.org/10.1016/B978-081551393-3.50007-7
- [81] H. H. Ibrahim, Y. I. Mawlood, and Y. M. Alshkane, "Using waste glass powder for stabilizing high-plasticity clay in Erbil city-Iraq," *International Journal of Geotechnical Engineering*, vol. 15, no. 4, pp. 496–503, 2021. Available from: https://doi.org/10.1080/19386362.2019.1647644
- [82] C. C. Ikeagwuani, I. N. Obeta, and J. C. Agunwamba, "Stabilization of black cotton soil subgrade using sawdust ash and lime," *Soils and Foundations*, vol. 59, no. 1, pp. 162–175, 2019. Available from: https://doi.org/10.1016/j.sandf.2018.10.004
- [83] A. O. Ilori and E. A. Udo, "Investigation of geotechnical properties of a lateritic soil with sawdust ash," *IOSR Journal of Mechanical and Civil Engineering*, vol. 12, no. 1, pp. 11–14, 2015. Available from: https://tinyurl.com/yv8ayecw
- [84] B. Indraratna, Y. Qi, R. S. Malisetty, S. K. Navaratnarajah, F. Mehmood, and M. Tawk, "Recycled materials in railroad substructure: an energy perspective," *Railway Engineering Science*, vol. 30, no. 3, pp. 304–322, 2022. Available from: https://doi.org/10.1007/s40534-021-00267-6
- [85] D. Ingabire and S. Kumar, "Enhancement of engineering properties of black cotton soil using rice husk and sawdust ash," E3S Web of Conferences, vol. 391, p. 01023, 2023. Available from: https://doi.org/10.1051/e3sconf/202339101023
- [86] S. IRC, 37 (2018) Guidelines for the design of flexible pavements. Indian Road Congress, New Delhi, 2018. Available from: https://tinyurl.com/4s9e4s2u
- [87] A. Jain, A. K. Choudhary, and J. N. Jha, "Influence of rice husk ash on the swelling and strength characteristics of expansive soil," *Geotechnical and Geological Engineering*, vol. 38, no. 2, pp. 2293–2302, 2020. Available from: https://doi.org/10.1007/s10706-019-01087-6
- [88] M. Jaiswal and B. Lal, "Impact of rice husk ash on soil stability (including micro level investigation)," *Indian Journal of Science and Technology*, vol. 9, no. 30, pp. 1–7, 2016. Available from: https://doi.org/10.17485/ijst/2016/v9i30/99189
- [89] K. Jamaluddin and R. P. Munirwan, "Improvement of geotechnical properties of clayey soil with sawdust ash stabilization," E3S Web of Conferences, vol. 340, p. 01009, 2022. Available from: https://doi.org/10.1051/e3sconf/202234001009
- [90] A. K. James, R. W. Thring, S. Helle, and H. S. Ghuman, "Ash management review—applications of biomass bottom ash," *Energies*, vol. 5, no. 10, pp. 3856–3873, 2012. Available from: https://doi.org/10.3390/en5103856
- [91] O. H. Jasım and D. Çetin, "Effect of sawdust usage on the shear strength behavior of clayey silt soil," Sigma Journal of Engineering and Natural Sciences, vol. 34, no. 1, pp. 31–41,

- 2016. Available from: https://dergipark.org.tr/en/pub/sigma/issue/65670/1018265
- [92] M. E. Jorat, A. Marto, E. Namazi, and M. M. Amin, "Engineering characteristics of kaolin mixed with various percentages of bottom ash," *Electronic Journal of Geotechnical Engineering*, vol. 16, no. 2, pp. 841–850, 2011. Available from: https://tinyurl.com/5jmr8sek
- [93] H. Karim, M. Al-Recaby, and M. Nsaif, "Stabilization of soft clayey soils with sawdust ashes," MATEC Web of Conferences, vol. 162, p. 01006, 2018. Available from: https://doi.org/10.1051/matecconf/201816201006
- [94] S. Kaza, L. C. Yao, P. Bhada-Tata, and F. Van Woerden, *What a waste 2.0: A global snapshot of solid waste management to 2050.* World Bank, 2018. Available from: https://tinyurl.com/3by9d9rh
- [95] S. Khan and H. Khan, "Improvement of mechanical properties by waste sawdust ash addition into soil," *Electronic Journal* of Geotechnical Engineering, vol. 20, no. 7, pp. 1901–1914, 2015. Available from: https://tinyurl.com/4b7r47m9
- [96] L. Khillar, S. Pattnaik, P. Pradhan, S. R. Pradhan, and S. Samal, "Stabilization of soil using fly ash," *International Journal for Research in Applied Science & Engineering Technology*, vol. 10, pp. 990–993, 2022. Available from: https://doi.org/10.22214/ijraset.2022.42335
- [97] K. D. Krishnan, P. Kiruthika, and P. T. Ravichandran, "Use of wood ash waste to stabilise soils," *International Journal of Environment and Waste Management*, vol. 25, no. 1, pp. 112– 120, 2020. Available from: https://doi.org/10.1504/IJEWM.2020.104350
- [98] A. Kumar Sharma and P. V. Sivapullaiah, "Improvement of strength of expansive soil with waste granulated blast furnace slag," in *GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering*, pp. 3920–3928, 2012. Available from: https://doi.org/10.1061/9780784412121.402
- [99] B. S. Kumar and T. V. Preethi, "Behavior of clayey soil stabilized with rice husk ash & lime," *International Journal of Engineering Trends and Technology*, vol. 11, no. 1, pp. 44–48, 2014. Available from: https://doi.org/10.14445/22315381/IJETT-V11P209
- [100] K. A. Kumar and C. Bhavannarayana, "Stabilization of lime treated black cotton soil with bamboo fibre," *International Journal of Science, Engineering and Advanced Technology*, vol. 8, pp. 13–21, 2020.
- [101] P. G. Kumar and S. Harika, "Stabilization of expansive subgrade soil by using fly ash," *Materials Today: Proceedings*, vol. 45, pp. 6558–6562, 2021. Available from: https://doi.org/10.1016/j.matpr.2020.11.469
- [102] T. M. Le, L. C. Dang, and H. Khabbaz, "Combined effects of bottom ash and lime on behaviour of expansive soil," in International Congress and Exhibition "Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology", pp. 28–44. Cham: Springer International Publishing, 2018. Available from: https://link.springer.com/chapter/10.1007/978-3-030-01914-3_3
- [103] B. Li, F. Luo, X. Li, and J. Liu, "Mechanical properties evolution of clays treated with rice husk ash subjected to freezing-thawing cycles," *Case Studies in Construction Materials*, vol. 20, p. e02712, 2024. Available from: https://doi.org/10.1016/j.cscm.2023.e02712
- [104] D. F. Lin, K. L. Lin, and H. L. Luo, "A comparison between sludge ash and fly ash on the improvement in soft soil," *Journal of the Air & Waste Management Association*, vol. 57, no. 1, pp. 59–64, 2007. Available from: https://doi.org/10.1080/10473289.2007.10465294
- [105] Y. Liu, C. W. Chang, A. Namdar, Y. She, C. H. Lin, X. Yuan, and Q. Yang, "Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue," *Construction and Building Materials*, vol. 221, pp. 1–11, 2019. Available from: https://doi.org/10.1016/j.conbuildmat.2019.05.157

- [106] Y. Mamuye and A. Geremew, "Improving strength of expansive soil using coffee husk ash for subgrade soil formation: A case study in Jimma Town," *International Journal of Engineering Research and Technology*, vol. 7, pp. 120–126, 2018. Available from: https://doi.org/10.17577/IJERTV7IS120046
- [107] C. J. Medina-Martinez, L. C. Sandoval Herazo, S. A. Zamora-Castro, R. Vivar-Ocampo, and D. Reyes-Gonzalez, "Use of sawdust fibers for soil reinforcement: A review," *Fibers*, vol. 11, no. 7, p. 58, 2023. Available from: https://doi.org/10.3390/fib11070058
- [108] D. T. Melese, "Utilization of waste incineration bottom ash to enhance engineering properties of expansive subgrade soils," *Advances in Civil Engineering*, vol. 2022, no. 1, p. 7716921, 2022. Available from: https://doi.org/10.1155/2022/7716921
- [109] A. Mohajerani, L. Burnett, J. V. Smith, S. Markovski, G. Rodwell, M. T. Rahman, et al., "Recycling waste rubber tyres in construction materials and associated environmental considerations: A review," Resources, Conservation and Recycling, vol. 155, p. 104679, 2020. Available from: https://doi.org/10.1016/j.resconrec.2020.104679
- [110] A. Mohajerani, D. Suter, T. Jeffrey-Bailey, T. Song, A. Arulrajah, S. Horpibulsuk, and D. Law, "Recycling waste materials in geopolymer concrete," *Clean Technologies and Environmental Policy*, vol. 21, pp. 493–515, 2019. Available from: https://doi.org/10.1007/s10098-018-01660-2
 [1111] Ojuri, O.O. and Epe, G.G., "Strength and leaching
- [111] Ojuri, O.O. and Epe, G.G., "Strength and leaching characteristics of crude oil contaminated sandy soil stabilized with sawdust ash-cement," *Geo-Chicago 2016*, pp. 582–590, 2016. Available from: https://doi.org/10.1061/9780784480168.057
- [112] Okwadha, G.D.O. and Nyingi, P.W., "Effectiveness of rice husk ash in stabilizing Kenyan red coffee soil for road subgrades construction," *International Journal of Environmental Science and Technology*, vol. 13, no. 11, pp. 2731–2734, 2016. Available from: https://doi.org/10.1007/s13762-016-1092-2
- [113] Ormeno, E., Rivas, N., Duran, G. and Soto, M., "Stabilization of a subgrade composed by low plasticity clay with rice husk ash," *IOP Conference Series: Materials Science and Engineering*, vol. 758, no. 1, p. 012058, Feb. 2020. Available from: https://doi.org/10.1088/1757-899X/758/1/012058
- [114] Ouf, M.É.S.A.R., "Stabilisation of clay subgrade soils using ground granulated blastfurnace slag," Doctoral dissertation, University of Leeds, 2001. Available from: https://tinyurl.com/2j684p3u
- [115] Owamah, H.I., Atikpo, E., Oluwatuyi, O. and Oluwatomisin, A.M., "Geotechnical properties of clayey soil stabilized with cement-sawdust ash for highway construction," *Journal of Applied Sciences and Environmental Management*, vol. 21, no. 7, pp. 1378–1381, 2017. Available from: https://doi.org/10.4314/jasem.v21i7.29
- [116] Owoyemi, O.O., "Effect of sawdust on the geotechnical properties of a lateritic soil," *Journal of Mining and Geology*, vol. 57, no. 1, pp. 127–139, 2021. Available from: https://tinyurl.com/4p64eb4v
- [117] Pant, A., Datta, M. and Ramana, G.V., "Bottom ash as a backfill material in reinforced soil structures," *Geotextiles and Geomembranes*, vol. 47, no. 4, pp. 514–521, 2019. Available from: https://doi.org/10.1016/j.geotexmem.2019.01.018
- [118] Pathak, A.K., Pandey, V., Murari, K. and Singh, J.P., "Soil stabilisation using ground granulated blast furnace slag," *International Journal of Engineering Research and Applications*, vol. 4, pp. 164–171, 2014. Available from: https://tinyurl.com/yc2dnwkb
- [119] Pelisser, G., Ferrazzo, S.T., Mota, J.D., Dos Santos, C.P., Pelisser, C., Rosa, F.D. and Korf, E.P., "Rice husk ash-carbide lime as an alternative binder for waste foundry sand stabilization," *Environmental Science and Pollution Research*, vol. 30, no. 14, pp. 42176–42191, 2023. Available from: https://doi.org/10.1007/s11356-022-25117-8

- [120] Phan, N.T., Sengsingkham, T., Tiyayon, P. and Maneeintr, K., "Utilization of bottom ash for degraded soil improvement for sustainable technology," *IOP Conference Series: Earth and Environmental Science*, vol. 268, no. 1, p. 012043, June 2019. Available from: https://doi.org/10.1088/1755-1315/268/1/012043
- [121] Phanikumar, B.R. and Sharma, R.S., "Volume change behavior of fly ash-stabilized clays," *Journal of Materials in Civil Engineering*, vol. 19, no. 1, pp. 67–74, 2007. Available from: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(67)
- [122] Phummiphan, I., Horpibulsuk, S., Rachan, R., Arulrajah, A., Shen, S.L. and Chindaprasirt, P., "High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material," *Journal of Hazardous Materials*, vol. 341, pp. 257–267, 2018. Available from: https://doi.org/10.1016/j.jhazmat.2017.07.067
- [123] Prabakar, J., Dendorkar, N. and Morchhale, R.K., "Influence of fly ash on strength behavior of typical soils," *Construction* and Building Materials, vol. 18, no. 4, pp. 263–267, 2004. Available from: https://doi.org/10.1016/j.conbuildmat.2003.11.003
- [124] Pushpakumara, B.H.J. and Mendis, W.S.W., "Suitability of rice husk ash (RHA) with lime as a soil stabilizer in geotechnical applications," *International Journal of Geo-Engineering*, vol. 13, no. 1, p. 4, 2022. Available from: https://doi.org/10.1186/s40703-021-00169-w
- [125] Rahgozar, M.A., Saberian, M. and Li, J., "Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study," *Transportation Geotechnics*, 2017. Available from: https://doi.org/10.1016/j.trgeo.2017.09.004
- [126] Rahman, M.T., Mohajerani, A. and Giustozzi, F., "Recycling of waste materials for asphalt concrete and bitumen: A review," *Materials*, vol. 13, no. 7, p. 1495, 2020. Available from: https://doi.org/10.3390/ma13071495
- [127] Raja, K., Venkatachalam, S., Vishnuvardhan, K., Krishnan, R.S.R., Selvan, V.T. and Vetriselvan, N., "A review on soil stabilization using rice husk ash and lime sludge," *Materials Today: Proceedings*, vol. 65, pp. 1205–1212, 2022. Available from: https://doi.org/10.1016/j.matpr.2022.04.178
- [128] Rani, T.G., Tulasi, K. and Krishna, S.R., "Ground granulated blast furnace slag as an expansive soil stabilizer," *VFSTR Journal of Science, Technology and Management (J. STEM)*, vol. 3, no. 1, pp. 1–4, 2017. Available from: https://vignan.ac.in/vfstrstem/vol3/Geetha% 20Rani.pdf
- [129] Rathan Raj, R., Banupriya, S. and Dharani, R., "Stabilization of soil using rice husk ash," *International Journal of Computer Engineering Research*, vol. 6, no. 2, pp. 43–50, 2016. Available from: https://tinyurl.com/f42f6fhy
- [130] Reiterman, P., Mondschein, P., Doušová, B., Davidová, V. and Keppert, M., "Utilization of concrete slurry waste for soil stabilization," *Case Studies in Construction Materials*, vol. 16, e00900, 2022. Available from: https://doi.org/10.1016/j.cscm.2022.e00900
- [131] Salahudeen, A.B., Kpardong, N.S. and Francis, P.M., "Enhancement of kaolin clay soil for civil engineering application using rice husk ash and sawdust ash geopolymer cements," *Nigerian Journal of Technological Development*, vol. 20, no. 1, pp. 44–55, 2023. Available from: https://doi.org/10.4314/njtd.v20i1.1232
- [132] Sefene, S.S., "Determination of effective wood ash proportion for black cotton soil improvement," *Geotechnical and Geological Engineering*, vol. 39, no. 1, pp. 617–625, 2021. Available from: https://doi.org/10.1007/s10706-020-01508-x
- [133] Sharma, A.K. and Sivapullaiah, P.V., "Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer," *Soils and Foundations*, vol. 56, no. 2, pp. 205–212, 2016. Available from: https://doi.org/10.1016/j.sandf.2016.02.004

- [134] Sharma, R.K. and Singh, B., "Modification of clayey soil using fly ash," *International Journal of Research in Engineering and Technology*, vol. 2, pp. 356–361, 2013. Available from: https://doi.org/10.15623/ijret.2013.0210054
- [135] Sharma, V. and Singh, S., "Modeling for the use of waste materials (bottom ash and fly ash) in soil stabilization," *Materials Today: Proceedings*, vol. 33, pp. 1610–1614, 2020. Available from: https://doi.org/10.1016/j.matpr.2020.05.569
- [136] Shehata, A.A.A., Owino, A.O., Islam, M.Y. and Hossain, Z., "Shear strength of soil by using rice husk ash waste for sustainable ground improvement," *Discover Sustainability*, vol. 5, no. 1, p. 64, 2024. Available from: https://doi.org/10.1007/s43621-024-00238-x
- [137] Shitaye, H., "Eucalyptus wood ash as stabilizer for black cotton soil," Doctoral dissertation, 2020.
- [138] Sivrikaya, O., Yavascan, S. and Cecen, E., "Effects of ground granulated blast-furnace slag on the index and compaction parameters of clayey soils," *Ground Improvement*, vol. 4, no. 5, pp. 6–7, 2014. Available from: https://tinyurl.com/24tn2ayk
- [139] Sreedevi, S. and Sreeja, V., "Effect of curing strength in lime—coffee husk ash mixture on clay," Sustainability, Agri, Food and Environmental Research, vol. 12, 2024. Available from: https://doi.org/10.7770/safer-V12N-art79872
- [140] Sudhakaran, S.P., Sharma, A.K. and Kolathayar, S., "Soil stabilization using bottom ash and areca fiber: Experimental investigations and reliability analysis," *Journal of Materials in Civil Engineering*, vol. 30, no. 8, 04018169, 2018. Available from: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002326
- [141] Suksiripattanapong, C., Tesanasin, T., Tiyasangthong, S., Tabyang, W., Sukontasukkul, P. and Chindaprasirt, P., "Use of cement and bottom ash in deep mixing application for stabilization of soft Bangkok clay," *Arabian Journal for Science and Engineering*, vol. 48, no. 4, pp. 4583–4593, 2023. Available from: https://doi.org/10.1007/s13369-022-07102-y
- [142] Sun, S., Liu, B. and Wang, T., "Improvement of expansive soil properties using sawdust," *The Journal of Solid Waste Technology and Management*, vol. 44, no. 1, pp. 78–85, 2018. Available from: https://doi.org/10.5276/JSWTM.2018.78
- [143] Supraja, B., Chaitanya, M.V., Muralikrishna, T., Puttaiah, V. and Owais, S.D., "A study on stabilization of black cotton soil using fly ash and rice husk ash," *International Journal for Multidisciplinary Research*, vol. 5, no. 2, 2023. Available from: https://doi.org/10.36948/ijfmr.2023.v05i02.2421
- [144] Suresh, K., Afsal, A., Fathima, A.A., Sebastian, C., Ashalatha, R. and Johnson, A.S., "Wood ash as a stabilizer for pavement subgrade," *Materials Today: Proceedings*, 2023. Available from: https://doi.org/10.1016/j.matpr.2023.03.705
- [145] Tamiru, M., "Suitability of Enset fiber with coffee husk ash as soil stabilizer," *American Journal of Civil Engineering*, vol. 11, no. 1, pp. 1–8, 2023. Available from: https://doi.org/10.11648/j.ajce.20231101.11
- [146] Tessema, A.T., Wolelaw, N.M., Abebe, A.E., Alene, G.A. and Abeje, B.T., "Utilization of coffee husk ash on the geotechnical properties of gypsum-stabilized expansive clayey soil," *Advances in Civil Engineering*, vol. 2023, no. 1, 3101774, 2023. Available from: https://doi.org/10.1155/2023/3101774
- [147] Thomas, A., Tripathi, R.K. and Yadu, L.K., "A laboratory investigation of soil stabilization using enzyme and alkaliactivated ground granulated blast-furnace slag," *Arabian Journal for Science and Engineering*, vol. 43, pp. 5193–5202, 2018. Available from: https://doi.org/10.1007/s13369-017-3033-x
- [148] Toth, P.S., Chan, H.T. and Cragg, C.B., "Coal ash as structural fill, with special reference to Ontario experience," *Canadian Geotechnical Journal*, vol. 25, no. 4, pp. 694–704, 1988. Available from: https://doi.org/10.1139/t88-080
- [149] Turan, C., Javadi, A.A., Vinai, R. and Beig Zali, R., "Geotechnical characteristics of fine-grained soils stabilized

- with fly ash: A review," *Sustainability*, vol. 14, no. 24, 16710, 2022. Available from: https://doi.org/10.3390/su142416710
- [150] Wild, S., Kinuthia, J.M., Jones, G.I. and Higgins, D.D., "Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of limestabilised sulphate-bearing clay soils," *Engineering Geology*, vol. 51, no. 1, pp. 37–53, 1998. Available from: https://doi.org/10.1016/S0013-7952(98)00039-8
- [151] Woldegiorgis, A.D., "Effect of coffee husk ash on index and strength properties of expansive soils," Doctoral dissertation, Department of Geotechnical Engineering, Addis Ababa Science and Technology University, 2019.
- [152] Yadu, L. and Tripathi, R.K., "Effects of granulated blast furnace slag in the engineering behaviour of stabilized soft soil," *Procedia Engineering*, vol. 51, pp. 125–131, 2013. Available from: https://doi.org/10.1016/j.proeng.2013.01.019
- [153] Yi, Y., Gu, L., Liu, S. and Jin, F., "Magnesia reactivity on activating efficacy for ground granulated blastfurnace slag for soft clay stabilisation," *Applied Clay Science*, vol. 126, pp. 57– 62, 2016. Available from: https://doi.org/10.1016/j.clay.2016.02.033
- [154] Yi, Y., Li, C. and Liu, S., "Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay," *Journal of Materials in Civil Engineering*, vol. 27, no. 4, 04014146, 2015. Available from: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001100
- [155] Yunus, N.Z.M., Hasni, M.H., Mazlan, H.H., Othman, B.A. and Hasbollah, D.Z.A., "Enhancing the compaction characteristics of peat soil through ground granulated blast furnace slag (GGBS) stabilisation," *Construction*, vol. 3, no. 2, pp. 223–229, 2023. Available from: https://doi.org/10.15282/construction.v3i2.9744
- [156] Zaid, W. and Günal, A.Y., "Enhancing properties of concrete mix using different types of waste materials: A review paper," *International Journal of Innovative Research in Engineering & Management*, vol. 10, no. 3, pp. 67–81, 2023. Available from: https://doi.org/10.55524/ijirem.2023.10.3.12
- [157] Zaini, M.S.I., Hasan, M. and Jusoh, W.N.B.W., "Utilization of bottom ash waste as a granular column to enhance the lateral load capacity of soft kaolin clay soil," *Environmental Science and Pollution Research*, pp. 1–27, 2023. Available from: https://doi.org/10.1007/s11356-023-25966-x
- [158] Zhao, G., Yan, D., Ren, G., Zhu, Z., Wu, T., Ding, S. et al., "Influence of ground granulated blast furnace slag on the dispersivity and mechanical property of dispersive soil," Construction and Building Materials, vol. 409, 134036, 2023. Available from: https://doi.org/10.2139/ssrn.4556399
- [159] Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M. et al., "Fly ash-based geopolymer: clean production, properties and applications," *Journal of Cleaner Production*, vol. 125, pp. 253–267, 2016. Available from: https://doi.org/10.1016/j.jclepro.2016.03.019
- [160] E. S. Nnochiri and O. M. Ogundipe, "Geotechnical properties of lateritic soil stabilized with ground-nut husk ash," *Civil Engineering Journal*, vol. 2, no. 11, pp. 568–575, 2016. Available from: https://doi.org/10.28991/cej-2016-00000059
- [161] E. S. Nnochiri, H. O. Emeka, and M. Tanimola, "Geotechnical characteristics of lateritic soil stabilized with sawdust ash-lime mixtures," *Stavební Obzor Civil Engineering Journal*, vol. 26, no. 1, 2017. Available from: https://doi.org/10.14311/CEJ.2017.01.0007
- [162] G. H. Nalon, R. F. Santos, G. E. S. de Lima, I. K. R. Andrade, L. G. Pedroti, J. C. L. Ribeiro, and J. M. F. de Carvalho, "Recycling waste materials to produce self-sensing concretes for smart and sustainable structures: A review," *Construction and Building Materials*, vol.

- 325, p. 126658, 2022. Available from: https://doi.org/10.1016/j.conbuildmat.2022.126658
- [163] T. H. T. Ogunribido, "Geotechnical properties of saw dust ash stabilized southwestern Nigeria lateritic soils," *Environmental Research, Engineering and Management*, vol. 60, no. 2, pp. 29–33, 2012 Available from: https://doi.org/10.5755/j01.erem.60.2.986
- [164] O. P. Navagire, S. K. Sharma, and D. Rambabu, "Stabilization of black cotton soil with coal bottom ash," *Materials Today: Proceedings*, vol. 52, pp. 979–985, 2022 Available from: https://doi.org/10.1016/j.matpr.2021.10.447
- [165] A. S. Muntohar, "Utilization of uncontrolled burnt rice husk ash in soil improvement," *Civil Engineering Dimension*, vol. 4, no. 2, pp. 100–105, 2002 Available from: https://ced.petra.ac.id/index.php/civ/article/download/15559/15551
- [166] O. S. Obam and A. Y. Iorliam, "Engineering properties of clay-rice husk ash composites," *Journal of Engineering and Applied Sciences*, vol. 3, pp. 38–44, 2011. Available from: https://www.cenresinjournals.com/wp-content/uploads/2020/03/page-38-44-523.pdf
 - [167] Z. A. Rahman, H. H. Ashari, A. R. Sahibin, L. Tukimat, and I. W. M. Razi, "Effect of rice husk ash addition on geotechnical characteristics of treated residual soil," *American-Eurasian Journal of Agricultural & Environmental Sciences*, vol. 14, no. 12, pp. 1368–1377, 2014 Available from: https://doi.org/10.5829/idosi.aejaes.2014.14.12.12462
 - [168] R. P. Munirwan and D. Sundary, "Study of coffee husk ash addition for clay soil stabilization," *IOP Conference Series: Materials Science and Engineering*, vol. 1087, no. 1, p. 012016, Feb. 2021. Available from: https://doi.org/10.1088/1757-899X/1087/1/012016
 - [169] R. P. Munirwan, A. M. Taib, M. R. Taha, N. Abd Rahman, and M. Munirwansyah, "A sustainable solution of coffee husk waste disposal for soil stabilization," 2023, Available from https://doi.org/10.53243/ICEG2023-318
- [170] B. D. Nath, G. Sarkar, S. Siddiqua, M. Rokunuzzaman, and M. R. Islam, "Geotechnical properties of wood ash-based composite fine-grained soil," *Advances in Civil Engineering*, vol. 2018, 2018 Available from: https://doi.org/10.1155/2018/9456019.
- [171] J. O. Oguche, J. B. Adeyeri, O. O. Amu, and O. F. Joseph, "Stabilization of expansive clay soils using saw dust ash," *Journal of Innovation Science and Technology*, vol. 2, no. 1, 2022 Available from: http://jist.fuoye.edu.ng/index.php/jist/article/view/34
- [172] J. B. Niyomukiza, S. P. R. Wardani, and B. H. Setiadji, "The influence of Keruing sawdust on the geotechnical properties of expansive soils," *IOP Conference Series: Earth and Environmental Science*, vol. 448, no. 1, p. 012040, Mar. 2020, https://doi.org/10.1088/1755-1315/448/1/012040.
- [173] J. B. Niyomukiza and Y. Yasir, "Effects of using sawdust ash as a stabilizer for expansive soils," *E3S Web of Conferences*, vol. 448, p. 03075, 2023, Available from: https://doi.org/10.1051/e3sconf/202344803075
- [174] H. Mujtaba, T. Aziz, K. Farooq, N. Sivakugan, and B. M. Das, "Improvement in engineering properties of expansive soils using ground granulated blast furnace slag," *Journal of the Geological Society of India*, vol. 92, pp. 357–362, 2018, Available from: https://doi.org/10.1007/s12594-018-1019-2
- [175] H. N. Muhwezi and E. S. Kyazze, Evaluating the effect of coffee husk ash used as a soil stabiliser, Bachelor's thesis, School of Engineering & Applied Science, Kampala Int. Univ., Kampala, Uganda, Jul. 2019. Available from: https://ir.kiu.ac.ug/items/462fdd73-e48b-4325-87bb-7e81cb8b845a
- [176] A. Sezer, G. İnan, H. R. Yılmaz, and K. Ramyar, "Utilization of a very high lime fly ash for improvement of

International Journal of Innovative Research in Engineering and Management (IJIREM)

Izmir clay," *Building and Environment*, vol. 41, no. 2, pp. 150–155, 2006 Available from: https://doi.org/10.1016/j.buildenv.2004.12.009

[177] B. A. Ikra, T. Kabir, A. N. Mowrin, and A. Habib, "Stabilization of clay soil mixed with wood ash," *International Journal of Scientific & Engineering Research*, vol. 9, no. 10, pp. 820–823, 2018. Available from: https://shorturl.at/UCwut

APPENDIX A

Supplementary Tables. This appendix contains the supplementary tables that support the findings discussed in this present study.