

AI-Powered Workforce Planning and Skills Management for the Digital Transformation of Oil and Gas Projects

Suresh Chikurumilli

Subject Matter Expert, Indian Institute of Business Management & Studies, Mumbai, Maharashtra, India

Correspondence should be addressed to Shubhangi Singh; sureshch.ch@gmail.com

Received: 22 December 2025;

Revised: 6 January 2026;

Accepted: 20 January 2026

Copyright © 2026 Made Suresh Chikurumilli. This is an open-access article distributed under the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: Upstream oil and gas industry is very complex and capital intensive so for safety, productivity as well as profitability project management should be done well. With technology development, AI is now being considered as a force that can revolutionize project planning, scheduling, and management in managing costs without altering risk or safety supervision. Generic AI tools such as automation, machine learning, predictive analytics, and NLP will help progress project lifecycles by reducing operating costs thus improve the overall efficiency. The above also results in lower downtime and operational risk caused by real-time monitoring systems predictive maintenance smarter resource allocations and better decision-making. In this paper, the application of AI in controlling of petroleum projects is analyzed using an Industrial Use Case for AI. In fact, artificial Intelligence has definitely had a higher commodity impact throughout the organization and added value both on upstream and downstream, from targeting during exploration to reservoir modelling (e.g., advanced surface tracking), optimizing drilling operations or increasing production efficiency. We introduced AI to project management and have seen tangible declines in instances ineffectuality's that make our business more sustainable as well as greener. There are some hitches to deploying AI, however. Companies do have high up-front costs, a lack of standards, and cyber-security risks as well as conventional resistance from staff. Solving these problems will take planning, investment in personnel and the willingness to modernize outdated systems.

KEYWORD: Artificial Intelligence, Oil and Gas, Project Management, Risk Mitigation, Efficiency

I. INTRODUCTION

Due to its reliance on technology and advanced data analytics, the oil and gas sector tends to operate on lengthy, complex, and cross-regional supply chain management projects, involving lengthy, expensive, and cross-cutting resources, as well as high technical and non-technical project management risks. The art of project management consists of delivering a project not only on time and within budget, but also in a manner that ensures the project remains serviceable for the years to come. Artificial intelligence ontologically advanced from traditional analysis to helping corporate decision makers solve strategic business problems and devise innovative

solutions to their persistent sectoral challenges. This describes a particular evolution of AI in society.

Artificial Intelligence is now a key component of decision-making frameworks in the global oil and gas industry. With regard to changes in operations and shifts in the market, manual skills, static models, and traditional project management's reactive methodologies will not suffice. By applying adaptive algorithms, resource optimization, and the predictive power of Machine Learning within AI, operations can be made simplified, and the quality of data can be improved. AI is of great value in uncertain and high-risk situations encountered during exploration, drilling, construction, and production. Predictive analytics, Machine Learning, and AI in general are emerging technologies in cost estimation and schedule optimization for risk management. Furthermore, project historical data can be used to predict cost and schedule overruns, as well as equipment failure, thus enhancing safety. With regard to information management, Natural Language Processing can review stakeholder communications, documents, and other regulatory requirements. Another area where AI facilitates the attainment of regulatory and environmental compliance targets is energy efficiency improvement through reduced waste management and resource optimization, making projects more environmentally and socially responsible as facilitated by improved operational efficiency while attaining enhanced environmental and safety objectives.

II. LITERATURE REVIEW

Artificial intelligence (AI) in oil and gas stems from innovation and technology in safety, execution, and environmental considerations. Analytics predicting risks and managing project lifecycles are key areas where AI is significantly applied. There are enormous benefits from such applications, but companies face challenges that must be overcome before AI can be fully integrated. Firms should also take into consideration less costly but operationally better ways that directly usher in improved efficiency and productivity.

A. Introduction to Artificial Intelligence in Oil and Gas

The oil and gas sector faces significant challenges in storing and processing data, largely due to the widespread use of numerous advanced and emerging technologies [1]. Accuracy in technical analysis enhances overall performance. Many of these business challenges can be

addressed through advances in machine learning (ML) and artificial intelligence (AI), as various upstream operations increasingly rely on these technologies for data processing, interpretation, and informed decision-making [2]. Increased data storage capacity and effective processing performance are just two of the many advantages of these developments. The applications and limitations of AI and ML in the upstream and other oil and gas sectors are highlighted in the summaries of several academics. In the oil and gas sector, integrating intelligent systems can drastically lower maintenance expenses and hazards. Digital technology is improving operational performance and simplifying decision-making procedures. The suitability of machine learning methods for specific tasks can be determined.

Engineers can more effectively monitor hydrocarbon recovery and create development strategies when reservoir rock parameters like porosity and permeability are accurately determined [3]. While permeability prediction uses a variety of well-log datasets to describe single-phase fluid flow, AI-based methods use wireline log data and seismic features for porosity estimate. AI techniques have also been used to overcome particular difficulties that arise when determining permeability under experimental settings. Artificial intelligence in drilling helps with the design and accurate assessment of drilling fluids, helps choose the right drill bits, and fixes issues that arise while drilling. Data science and machine learning (ML) are becoming increasingly important in fields like petroleum exploration, reservoir characterization, drilling operations, production, well stimulation, and especially in the new field of unconventional reservoirs, according to a thorough analysis of their role in petroleum engineering and geoscience disciplines [4]. The development of predictive skills and algorithmic refinement to satisfy industry-specific requirements are critical to the future course of data science and machine learning in the oil and gas sector. A thorough analysis of several machine learning techniques shows how these methods are used in a variety of industry sectors. complicated issues that were

previously unsolvable through analytical techniques or numerical simulations are now being solved because to the development of strong computer systems, complicated algorithms, and ongoing data creation from industrial equipment. ML frameworks can overcome the restrictions imposed by assumptions in analytical models or the resource limits of numerical simulators by integrating all aspects of log data and capturing all pertinent details related to the target variables. Notwithstanding its limitations, machine learning's adaptability and versatility make it a revolutionary strategy.

The worldwide shift to renewable energy sources, the COVID-19 pandemic's impact on oil consumption, and the oil and gas industry's volatility are all contributing to the industry's need for innovation and digital transformation [5]. These changes have brought the use of Industry 4.0 (I4.0) technology in oil and gas operations to the attention of both practitioners and scholars. Although a number of studies have looked at the usage of these technologies, there is currently no thorough study of the upstream section. Current initiatives, which start with a concept overview and go to a thorough literature study that examined 223 articles from 2012 to 2021 through an integrative lens, demonstrate the state-of-the-art implementation of I4.0 in upstream operations. A framework designed for upstream implementation has been proposed as a result of the adoption of I4.0 technologies, which has shown both significant advantages and noteworthy obstacles. Frameworks, edge and quantum computing, communication systems, standards, and new developments pertinent to upstream integration are some of the future trends and prospects. Although certain strategies, like virtual reality and additive manufacturing, are still underused, the results show that I4.0 technologies are being actively investigated and implemented across a variety of upstream sector domains. The figure illustrates how Industry 4.0 technologies enhance business models, collaboration, applications, and environmental strategies in the oil and gas upstream sector through service providers as shown in Figure 1.

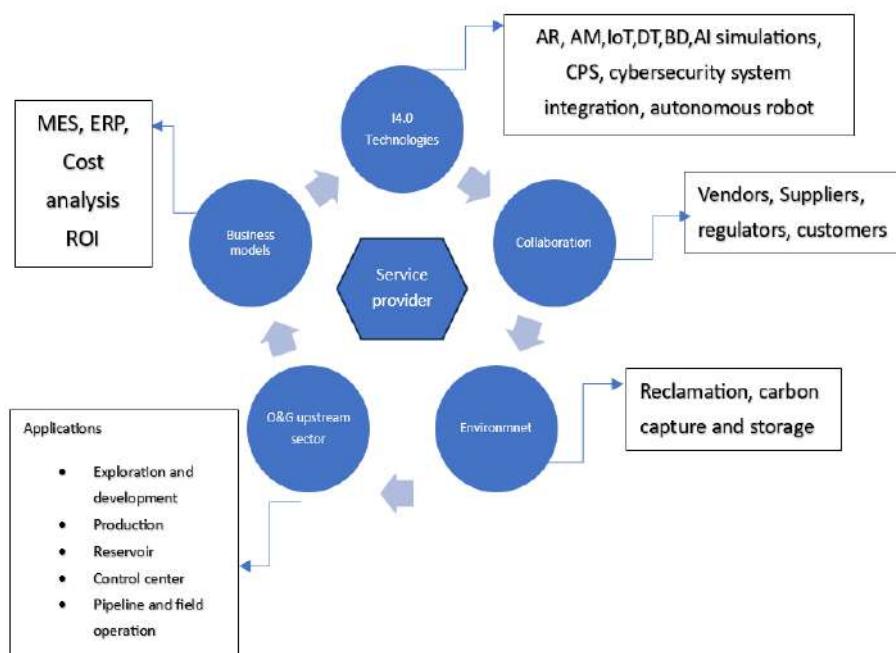


Figure 1: Framework of Industry 4.0 Integration in Oil & Gas Sector

Although oil and gas construction projects are essential to meeting the world's energy demands, they also carry a number of complicated dangers that need for sophisticated and flexible building techniques [6]. AI is becoming more widely acknowledged as a potent instrument to tackle these issues, especially in promoting sustainability in the industry. To investigate how AI aids in oil and gas construction, a systematic literature review (SLR) spanning 2011–2022 was carried out. The assessment looked at 115 published publications, highlighting unique contributions and showing a noticeable increase in research on artificial intelligence after 2016. Research indicates that artificial intelligence is gradually influencing building methods, enhancing productivity, and fortifying sustainability results in oil and gas projects. This study is unusual since it provides ideas to improve the delivery of sustainable projects and thoroughly evaluates current scholarly efforts. Additionally, it highlights the most effective AI techniques and applications that have the potential to significantly influence future advancements in the sector. This table highlights core operational domains where AI enhances oil and gas efficiency, safety, and sustainability as shown in [Table 1](#).

Table 1: AI Applications in Oil and Gas Operations

DOMAIN	AI TECHNIQUES APPLIED	BENEFITS
Exploration	Seismic data modeling, ML	Improved accuracy of reserves prediction
Drilling	Predictive analytics, Deep Learning	Optimized drilling efficiency, reduced downtime
Reservoir Management	Neural networks, Simulation	Enhanced recovery and reservoir performance
Production	Real-time monitoring, Robotics	Better output, reduced equipment failures
Sustainability	AI forecasting models	Energy efficiency and carbon reduction

B. Role of Project Management in the Oil and Gas Sector

In order to increase efficiency by removing waste and optimizing value across process streams, lean production concepts and techniques have been widely used in the manufacturing and construction industries [7]. Turnaround maintenance (TAM), a planned and rigorous maintenance program, entails a specific range of tasks completed using specialist techniques. Enhancing the effectiveness and efficiency of TAM operations requires effective project management. A risk map was created utilizing the data obtained by prioritizing risk variables using the relative relevance index (RII) [8]. To verify validity and investigate the relationships between various risk variables, reliability testing and correlation analysis were also carried out. Strong consistency was shown by reliability values of 0.81 for effects and 0.974 for risk causes. The most significant risks influencing project success are highlighted by the results of the RII analysis and risk mapping. Given the paucity of previous study in

this field, the results should be of great use to oil and gas corporations, organizations contemplating investment in the industry, legislators, and scholars.

Because complex oil and gas projects need large capital investments, have lengthy lifecycles, and are always subject to market volatility, accurate cost forecasting and sound financial planning are essential to their successful completion [9]. AI-driven predictive models improve the accuracy of cost estimation, machine learning algorithms reveal cost trends, optimize resource allocation, and lower financial risks, and Monte Carlo simulations assess uncertainty and test alternative scenarios, enabling managers to create robust strategies. Blockchain technology is being implemented to eliminate fraud and safeguard financial transactions in order to assure transparency and accountability. At the same time, regulators, financial experts, and technologists are working together to improve methods. Oil and gas companies can reduce the risks associated with large-scale energy projects, improve investment decisions, and strengthen financial resilience by implementing this data-driven and holistic approach. Future research will concentrate on improving AI accuracy, incorporating sustainability parameters, and using digital twins in financial modeling, which will ultimately provide an organized route to more effective and sustainable cost forecasting and planning in the industry. As the oil and gas industry has become one of the most data-intensive sectors due to the introduction of advanced sensors in exploration, drilling, and production, Big Data analytics—which are characterized by volume, variety, velocity, veracity, value, and complexity—is being used more and more in both upstream and downstream segments [10]. Its applications include analyzing seismic and micro-seismic records, improving reservoir characterization and simulation, reducing drilling timelines while improving safety, optimizing pump performance, strengthening petrochemical asset management, improving logistics and shipping operations, and raising occupational safety standards. Widespread adoption is still limited despite growing recognition of its potential. This is mainly because of a lack of organizational support, a lack of understanding of its business value, and ongoing issues with data quality and the difficulty of converting analytics into workable solutions.

In order to improve operational performance, increase asset efficiency, reduce health, safety, and environmental (HSE) risks, optimize portfolios, reduce capital and operating expenses, and increase overall productivity, the oil and gas industry is being compelled by declining oil prices to embrace innovative strategies and deploy smart field technologies [11]. The Internet of Things (IoT) is at the heart of this digital revolution because it makes it possible to gather, process, and analyze data in real time from a variety of devices, operations, and processes in order to achieve these objectives. Condition-based monitoring, asset tracking, and logistics management are just a few of the upstream, middle, and downstream IoT applications that present substantial chances to increase productivity and create societal value. Despite its potential, adoption is hampered by factors including cyber threats, a lack of technical preparedness for dangerous settings like zones 0 and 1, poor communication infrastructure, workforce issues, maintenance problems,

and obsolescence of technology. An outline of IoT in the industry focuses on its function, advantages, difficulties, and deployment status, highlighting both its revolutionary potential and the obstacles that need to be removed for broader use. Managing offshore platforms once their production cycle is over is a complex task that involves safety, ecological, economical, and technological factors [12].

By looking at institutional pressures, industry-specific characteristics, and contextual factors, the study investigates supplier selection in the oil and gas sector and shows how government initiatives might motivate businesses to incorporate social sustainability into their supply chains [13]. A case study from Oman demonstrates how national-level procedures, in conjunction with public policy, influence the selection of socially conscious suppliers. Major oil and gas companies' purchasing, procurement, and supply chain managers were surveyed in

order to gather data; interviews were also conducted to get more in-depth information. A fundamental gap is shown by the findings when seen through the prism of institutional theory: coercive pressure from the government is not enough to promote truly socially viable practices. Compliance often takes the role of innovation in the absence of internal organizational commitment, leading to very modest gains. Additionally, a ceiling effect occurs when businesses meet the bare minimum but don't continue to advance. According to the report, governments should think about frameworks that encourage proactive involvement and ongoing improvement of social sustainability performance throughout the business rather than relying solely on coercive measures. AI integration in project management improves cost forecasting, risk assessment, and sustainability alignment in oil and gas projects as shown in Table 2.

Table 2: Project Management and Support Functions Enabled by AI

Function	AI Application	Outcome
Risk Mapping	Predictive models	Identification and prioritization of high-risk variables
Cost Forecasting	AI + probabilistic modeling	More accurate budget control
Maintenance Planning	IoT & ML	Improved turnaround maintenance
Supply Chain	AI optimization	Smarter logistics and procurement decisions
Sustainability	Digital twin & analytics	Green practices in decommissioning and operations

III. METHODOLOGY

This study employs a qualitative approach, synthesizing existing literature, case studies, and methodological frameworks to assess AI applications in oil and gas project management, emphasizing planning, scheduling, safety, cost control, and risk mitigation strategies.

A. Applications of AI in Project Planning and Scheduling

A fundamental component of project management is planning, where efficient resource allocation and job scheduling are particularly important in the early phases of implementation [14]. In order to automate the planning of photovoltaic (PV) plant construction projects, an artificial intelligence model has been developed. This model covers a total of 100 scheduled tasks that correspond to a standard Engineering, Procurement, and Construction framework. These tasks include engineering, procurement, logistics, construction, commissioning, and substation and transmission line works. The system can recreate and optimize real-world planning scenarios because it was

trained on 50 actual project plans. Results demonstrate the model's accuracy and efficiency in project scheduling, which is a major step in the direction of PV project management's digital transformation. The field of artificial intelligence is growing quickly, and many models are appearing in a variety of fields, including science, engineering, and finance [15]. This study looks at a variety of learning strategies used in project management, with a focus on hybrid systems that integrate several computational modalities. Since these models are still in their infancy, the scientific community will need to conduct a great deal more research and improve them. A brief summary of current approaches and their uses is also provided, as well as a taxonomy of project management domains and the associated AI techniques used in each field. This analysis highlights the promise of AI-driven methodologies as well as the chances for furthering the subject, giving academics interested in examining the relationship between artificial intelligence and project management a starting point. The diagram demonstrates how AI enhances project management by transforming

inefficient planning into optimized execution through data training, automation, and hybrid system integration as shown in Figure 2.

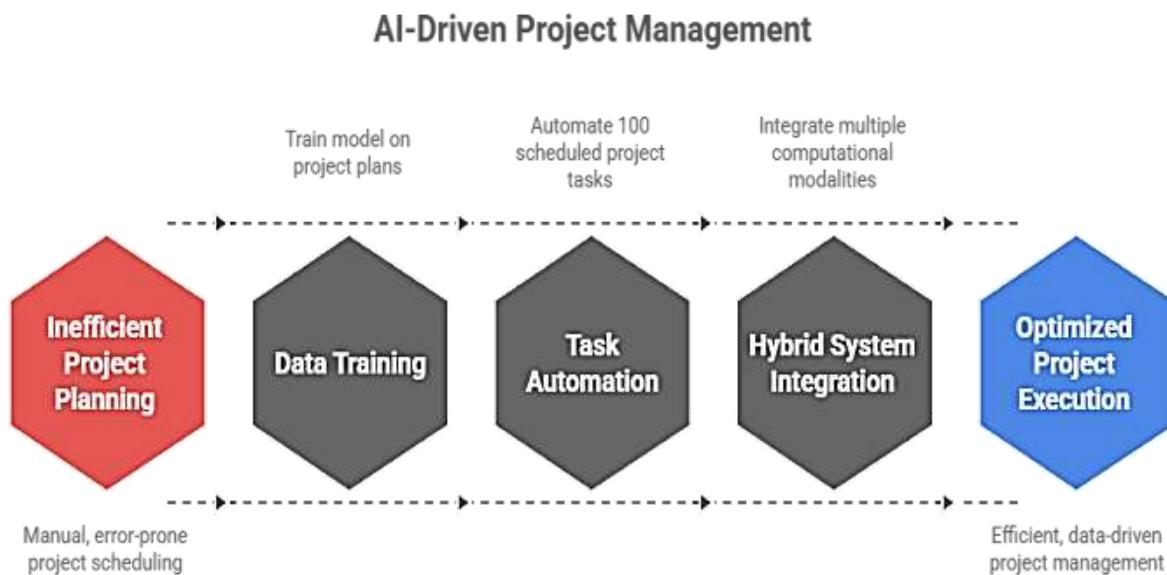


Figure 2: AI-Driven Project Management Framework

In order to facilitate more effective, sustainable, and human-centered production processes, businesses are increasingly utilizing the potential of cutting-edge technologies like artificial intelligence in the Industry 5.0 age [16]. In a similar vein, artificial intelligence has a lot to offer project management in the form of improved project performance, assistance in accomplishing project goals, and eventually, increased levels of sustainable success. In this regard, the paper presents the applications of AI approaches across many project management performance areas and conducts a comprehensive literature analysis to examine the role of AI in the developing field of project management. AI approaches are particularly promising for improving important project management domains and supporting more efficient, data-driven, and sustainable project execution strategies by offering sophisticated forecasting capabilities and informed decision-making support. Over the past few decades, there has been a lot of interest in production planning and scheduling optimization in underground mining operations due to the growing need for operations to sustainably meet shareholder expectations in the face of increasingly challenging operating conditions [17]. The application of mathematical programming techniques, such as simulation algorithms, heuristic methods, and mixed-integer programming, as well as hybrid combinations of these approaches, has been the subject of numerous research with noteworthy results in production schedule optimization. However, as the amount of input data has increased due to the spread of information technology platforms, the limitations of independent mathematical optimization models have become more evident, underscoring the need for further academic attention. Big data's ascent, driven by industrial automation and digitization, has increased interest in data-driven scheduling and planning optimization, mostly in manufacturing and operations management. These methods seek to support the attainment of mineral

production targets, enhance operational efficiency, and promote the sector's adoption of intelligent, adaptive scheduling strategies by facilitating more accurate modeling and dynamic response to variability in important determinants like ore grade and tonnage. Methods and tools showcasing how AI is reshaping planning, scheduling, and resource allocation in project management as shown in Table 3.

Table 3: AI Methodologies for Project Planning and Scheduling

Methodology	Tool/Technique	Impact on Project Management
Task Scheduling	AI-based optimization algorithms	Improved project timelines and resource allocation
Hybrid Models	Multi-algorithm systems	Greater adaptability to uncertainty
Simulation	Machine learning simulations	Dynamic scenario planning
Predictive Models	Forecasting with historical data	Reduced delays and bottlenecks

B. AI in Risk Management and Safety

The intricate connection between AI safety and AI security has been brought to light by the discovery of security flaws in safety-focused language models, such as their vulnerability to hostile attacks [18]. Although the two disciplines currently share the overarching goal of AI risk management, historically they have evolved in different directions, resulting in different viewpoints and methods. In order to ensure that both viewpoints are specifically taken into account when creating thorough and successful risk mitigation strategies, it is crucial for stakeholders in AI risk management to understand the subtleties, overlaps,

and interconnections between safety and security. Inconsistencies in the definitions of basic terms like "safety" and "security," which differ throughout societies and lack consensus, frequently make this goal more difficult to achieve. As the driving force behind the most recent wave of industrial transformation, artificial intelligence has become a significant driver of economic growth [19]. It is also well-positioned to capitalize on the momentum of earlier technological revolutions to modernize key economic activities such as production, distribution, exchange, and consumption. Concurrently, the idea of a token economy—where money is given directly to service users and content producers who provide value—has been introduced by the decentralized architecture of blockchain, creating a more transparent and egalitarian system. Such token-based protocols are

implemented using blockchain technology, which heralds the arrival of a new economic paradigm.

It also highlights the difficulties in putting AI TRiSM into practice, including the need for domain expertise, regulatory compliance, skill shortages, and vulnerability to adversarial attacks [20]. In order to improve ethical practices, security, and general trust in AI systems, the conversation concludes by highlighting future paths for AI TRiSM and highlighting the significance of ongoing adaptation, interdisciplinary cooperation, and proactive risk management. The figure highlights a unified framework that addresses AI safety gaps by clarifying differences, promoting understanding, and fostering cooperation for effective AI risk management as shown in Figure 3.

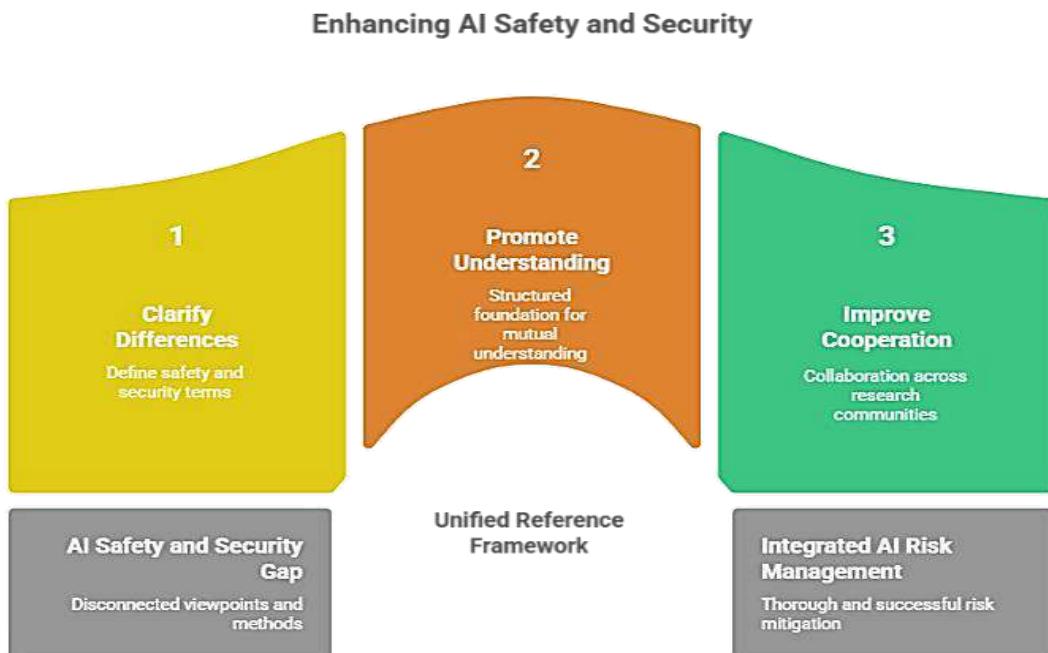


Figure 3: Framework for Enhancing AI Safety and Security

Although there are many potential advantages to advanced artificial intelligence models, society must actively manage the hazards they provide. The focus of this conversation is on so-called "frontier AI" models, which are extremely powerful foundation models that have the potential to acquire hazardous skills that might seriously jeopardize public safety [21]. Because of the unpredictable emergence of harmful capabilities, the difficulty of preventing misuse once a model is implemented, and the difficulty of controlling the growth of such capabilities, these models provide special regulatory issues. Establishing standards to specify suitable requirements for frontier AI developers, putting in place registration and reporting requirements to give regulators insight into development processes, and creating procedures to guarantee adherence to safety standards throughout the development and deployment lifecycle are the minimum three regulatory building blocks needed to address these issues. This framework seeks to promote a well-rounded strategy that reduces threats to public safety while promoting innovation, adding to the larger discussion on responsible governance at the cutting edge of AI development. With applications ranging from advanced

medical diagnostics to self-driving cars, highly automated systems are becoming more and more common and provide significant advantages [22]. Notwithstanding these benefits, assurance issues have emerged, especially in the wake of well-publicized mishaps and occurrences. To ensure public confidence in such systems, effective governance is necessary. Although governance principles have been put forth to help developers of automated systems, their actual application frequently proves challenging because of the high expenses and intricate procedures needed to set and uphold these standards. Authored by a global, interdisciplinary team from academia, industry, and government organizations, this Perspective promotes independent auditing as a means of obtaining widespread assurance of highly automated systems. Three "AAA" governance principles—prospective risk assessments, operational audit trails, and system adherence to jurisdictional requirements—are integrated into the suggested methodology. The problem of ensuring the safety, dependability, and compliance of sophisticated automated systems is otherwise expensive and unenforceable; independent audit provides a practical and implementable answer.

Performance in the construction industry is still relatively low, especially when compared to other US sectors, even with the adoption of both conventional and novel methods to improve construction safety management [23]. In addition to raising project costs and lengthening completion times, suboptimal safety results also lower job quality and staff productivity. The architectural, construction, and engineering (ACE) sector must embrace and successfully incorporate improved safety practices across the project lifecycle in order to meet these

difficulties. Even though there are several technologies that may greatly increase safety if used properly, the industry has not yet adopted them. By emphasizing the useful applications of these technologies, the conversation gives construction managers evidence-based knowledge to help them decide which technologies to use, which will ultimately lead to better safety results and project performance overall. AI framework address safety, trust, regulation, and governance challenge in oil and gas project as shown in [Table 4](#).

Table 4: Risk, Safety, and Governance Domains for AI

Domain	AI Contribution	Benefit
Safety	AI risk detection	Fewer workplace accidents
Trust & Security	AI TRiSM	Transparent and accountable systems
Regulation	Frontier AI models	Compliance with evolving laws
Governance	Independent audits	Higher operational assurance
Cost Efficiency	AI-driven analytics	Reduced overhead and wastage

C. AI for Cost Control and Efficiency

Artificial intelligence (AI) is now considered a leading technology for cost management, as it helps to optimize operational effectiveness and finances [24]. The investigation focuses on the various ways in which artificial intelligence can aid businesses in managing their costs and generate profits. The literature discusses organizational strategies that promote the effective use of

AI technology to improve efficiency and patient outcomes, as well as the challenges faced by healthcare management in assessing AI readiness and overcoming implementation bottlenecks [25]. The 4 dimensions of AI in business: strategically leveraging enhance operations, predictive analytics and data-driven decisions as shown in [Figure 4](#).

AI Applications in Cost Control and Efficiency

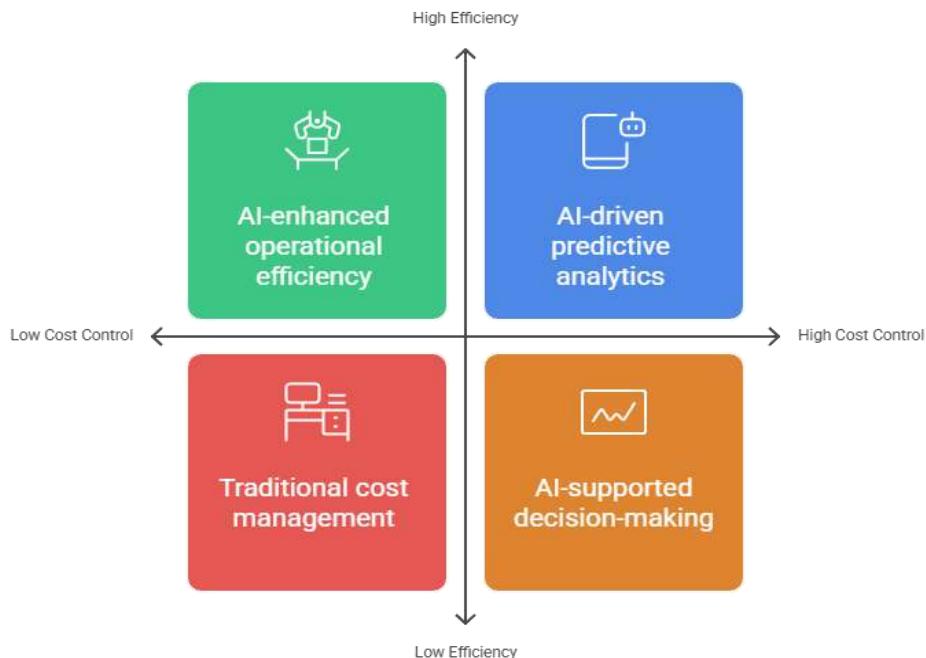


Figure 4: AI Applications in Cost Control and Efficiency Quadrant

By utilizing natural language processing and machine learning, advanced analytics can now be utilized by businesses to improve their performance [26].

Traditionally, business analytics relies on statistics and data analysis from history to inform decisions about how to optimize processes. In particular, it looks at ways in

which AI-led analytics can "overcome the challenges of earlier methods by providing automation and real time insights as well as predictive capabilities.". By enabling strategic decision-making and process acceleration, AI can enhance operational efficiency with significant cost savings and productivity, as demonstrated by the study. Through the utilization of actual data and case studies, this is accomplished.

Renewable energy technologies, including energy forecasting, energy efficiency, and accessibility, are increasingly dependent on artificial intelligence to overcome these challenges [27]. AI's role in advancing efficiency, analytics, and sustainability across oil and gas and related industries as shown in [Table 5](#).

Table 5: AI-Driven Efficiency and Innovation in Oil and Gas

Area	AI Application	Measurable Outcome
Healthcare Costs	AI scheduling & resource allocation	Reduced operational costs
Business Analytics	Real-time AI insights	Smarter strategic decisions
Operational Efficiency	Workflow automation	Higher productivity and lower costs

IV. CHALLENGES IN IMPLEMENTING AI

High Implementation Costs: Introducing artificial intelligence into oil and gas project management brings many potential benefits, but it comes with substantial financial challenges. Setting up AI systems requires significant spending on advanced equipment, software, and staff training. For smaller companies, finding the resources to support large-scale digital changes can be particularly difficult. These high initial costs often prevent smaller operators from adopting AI, limiting their ability to modernize operations or compete effectively in a rapidly evolving industry.

Problems in Managing Data: Managing data can be quite a challenge. Data in the oil and gas industry is often disparate and inconsistent and is frequently stored in formats that are hard to analyze. If data is not consistent and well organized, AI will not provide dependable insights. Data is difficult to share between teams or organizations, which inhibits innovation and collaboration, due to privacy issues and unclear ownership. Consequently, the organization and preparation of data is a vital requirement for the success of any AI initiative.

There are human factors affecting AI adoption, such as workforce resistance and a skills shortage. Many staff members are well-versed in traditional project management approaches and become uncomfortable with change, especially technology-based changes where they feel threatened with redundancies or displaced roles that no longer meet their original expectations. In the interim, there is slim pickings in terms of AI and Machine Learning expertise so a lot of resources must be invested into training programmes workshops etc. These issues in the workforce need to be addressed if AI is to be adopted more easily and exploitation of its potential maximised.

Security: In order for AI systems to be secure from hacking, data breaches and cyber threats, connected digital platforms are a requirement. There also are no clear laws in place that govern responsibility for AI, which is inhibiting companies from fully adopting it.

V. CONCLUSION

The application of real-time data analysis algorithms has decreased workplace hazards by identifying possible machinery failures and notifying workers prior to these events. Furthermore, AIT initiatives to conserve and maximize use of the utilization of waste and energy consumption are advancing sustainability initiatives. That said, these same benefits also mean the common challenges in implementing widespread policies, solutions and use of technology remain in place: data leaks, cybersecurity risk, lack of employees skilled in deployment and automation. Therefore, strategic consideration of training employees, investment in technology and consideration to the regulatory frame work must take into consideration.

The evidence shows that AI technology is transforming the Project Management of oil and gas projects but not necessarily changing this direction. The organizations that can be flexible in taking project managers implementing better organized, systematic principles and rebuilding their system with strong safeguards will be positioned to defend themselves against AIT.

The use of artificial intelligence in oil and gas project management has made it a powerful tool for innovation, as it can address sustainability, cost containment, efficiency, and safety concerns. Several applications of AI, including risk management, digital twins, cost forecasting, and predictive maintenance (when models are imperfect), have been shown to improve project lifecycle outcomes. Why? Although there are many obstacles to successful implementation, the evidence from case studies and literature suggests that operational performance can be improved with greater effectiveness.

Integration can only be achieved if the main barriers are carefully addressed: price increases, job market instability, cybersecurity risks, data management issues and regulatory uncertainties.". The future is looking up with the emergence of Industry 5.0, blockchain, and digital twin technologies that are expected to reinforce AI's role in the industry. These benefits can only be achieved through the implementation of comprehensive plans that incorporate workforce development, ethical governance and technical investment for oil and gas companies.

VI. FUTURE PROSPECTS

Artificial intelligence (AI) It is predicted that like other industries, AI and machine learning, blockchain and Industry 5.0 will revolutionize the oil & gas industry. Such technology can bring efficiency, safety and sustainability. Through virtual settings, digital twin enables users to "simulate" process in real time, "predict" equipment failures and "modeling" the lifecycle of project. There's nothing like it in the industry. Costs and risks are minimized by having project managers test multiple alternatives in advance of change.

AI-based predictive maintenance will enhance equipment accuracy, by using historical and real-time sensor data to achieve efficient fault forecasting during downtime as well as longer lifecycle. These subsystems will be enhanced by IoT devices and there will be less participation from human in regular monitoring efforts. In order to reach low-carbon targets, AI should also be leveraged to improve resource efficiency as well as decrease waste and energy consumption. The oil and gas industry faces growing demand for AI-skilled workforces as companies rely on education partnerships and focused training programs. Regulatory frameworks are also required to make AI's adoption secure, transparent and unbiased across the industry. AI in Oil and Gas Project Management: In the next few years AI in oil and gas project management is expected to become more autonomous, complete systems that are connected and sustainable.

REFERENCE

[1] S. Choubey and G. P. Karmakar, "Artificial intelligence techniques and their application in oil and gas industry," *Artificial Intelligence Review*, vol. 54, no. 5, pp. 3665–3683, Nov. 2020. Available from: <https://doi.org/10.1007/s10462-020-09935-1>

[2] Sircar, K. Yadav, K. Rayavarapu, N. Bist, and H. Oza, "Application of machine learning and artificial intelligence in oil and gas industry," *Petroleum Research*, vol. 6, no. 4, pp. 379–391, Jun. 2021. Available from: <https://doi.org/10.1016/j.ptlrs.2021.05.009>

[3] P. Solanki, D. Baldaniya, D. Jogani, B. Chaudhary, M. Shah, and A. Kshirsagar, "Artificial intelligence: New age of transformation in petroleum upstream," *Petroleum Research*, vol. 7, no. 1, pp. 106–114, Jul. 2021. Available from: <https://doi.org/10.1016/j.ptlrs.2021.07.002>

[4] Z. Tariq *et al.*, "A systematic review of data science and machine learning applications to the oil and gas industry," *Journal of Petroleum Exploration and Production Technology*, vol. 11, no. 12, pp. 4339–4374, Sep. 2021. Available from: <https://doi.org/10.1007/s13202-021-01302-2>

[5] O. Elijah *et al.*, "A survey on Industry 4.0 for the oil and gas industry: Upstream sector," *IEEE Access*, vol. 9, pp. 144438–144468, Jan. 2021. Available from: <https://doi.org/10.1109/ACCESS.2021.3121302>

[6] Waqar, I. Othman, N. Shafiq, and M. S. Mansoor, "Applications of AI in oil and gas projects towards sustainable development: A systematic literature review," *Artificial Intelligence Review*, vol. 56, no. 11, pp. 12771–12798, Mar. 2023. Available from: <https://doi.org/10.1007/s10462-023-10467-7>

[7] W. Shou, J. Wang, P. Wu, and X. Wang, "Lean management framework for improving maintenance operation: development and application in the oil and gas industry," *Production Planning & Control*, vol. 32, no. 7, pp. 585–602, Mar. 2020. Available from: <https://doi.org/10.1080/09537287.2020.1744762>

[8] M. A. Kassem, M. A. Khoiry, and N. Hamzah, "Using relative importance index method for developing risk map in oil and gas construction projects," *Jurnal Kejuruteraan*, vol. 32, no. 3, pp. 441–453, Aug. 2020. Available from: [https://doi.org/10.17576/jkukm-2020-32\(3\)-09](https://doi.org/10.17576/jkukm-2020-32(3)-09)

[9] C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, "A conceptual approach to cost forecasting and financial planning in complex oil and gas projects," *International Journal of Multidisciplinary Research and Growth Evaluation*, vol. 3, no. 1, pp. 819–833, Jan. 2022. Available from: <https://doi.org/10.54660/IJMRGE.2022.3.1.819-833>

[10] M. Mohammadpoor and F. Torabi, "Big data analytics in oil and gas industry: An emerging trend," *Petroleum*, vol. 6, no. 4, pp. 321–328, Dec. 2018. Available from: <https://doi.org/10.1016/j.petlm.2018.11.001>

[11] T. R. Wanasinghe, R. G. Gosine, L. A. James, G. K. I. Mann, O. De Silva, and P. J. Warrian, "The Internet of Things in the oil and gas industry: A systematic review," *IEEE Internet of Things Journal*, vol. 7, no. 9, pp. 8654–8673, May 2020. Available from: <https://doi.org/10.1109/JIOT.2020.2995617>

[12] V. Basile, N. Capobianco, and R. Vona, "The usefulness of sustainable business models: Analysis from oil and gas industry," *Corporate Social Responsibility and Environmental Management*, vol. 28, no. 6, pp. 1801–1821, Jul. 2021. Available from: <https://doi.org/10.1002/csr.2153>

[13] Rentzelas, A. B. L. De Sousa Jabbour, A. D. A. Balushi, and A. Tuni, "Social sustainability in the oil and gas industry: Institutional pressure and the management of sustainable supply chains," *Annals of Operations Research*, vol. 290, no. 1–2, pp. 279–300, Mar. 2018. Available from: <https://doi.org/10.1007/s10479-018-2821-3>

[14] J. G. Ruiz, H. Díaz, and R. G. Crespo, "The application of artificial intelligence planning and scheduling in photovoltaic plant construction projects," *Expert Systems*, Nov. 2024. Available from: <https://doi.org/10.1111/exsy.13798>

[15] J. Gil, J. M. Torres, and R. González-Crespo, "The application of artificial intelligence in project management research: A review," *International Journal of Interactive Multimedia and Artificial Intelligence*, vol. 6, no. 6, p. 54, Jan. 2021. Available from: <https://doi.org/10.9781/IJIMAI.2020.12.003>

[16] Taboada, A. Daneshpajouh, N. Toledo, and T. De Vass, "Artificial intelligence enabled project management: A systematic literature review," *Applied Sciences*, vol. 13, no. 8, p. 5014, Apr. 2023. Available from: <https://doi.org/10.3390/app13085014>

[17] P. Chimunhu, E. Topal, A. D. Ajak, and W. Asad, "A review of machine learning applications for underground mine planning and scheduling," *Resources Policy*, vol. 77, p. 102693, Apr. 2022. Available from: <https://doi.org/10.1016/j.resourpol.2022.102693>

[18] X. Qi *et al.*, "AI risk management should incorporate both safety and security," *arXiv*, May 2024. Available from: <https://arxiv.org/abs/2405.19524>

[19] G. I. Zekos, "AI risk management," in *Springer eBooks*, 2021, pp. 233–288. Available from: https://doi.org/10.1007/978-3-030-64254-9_6

[20] M. Habbal, M. K. Ali, and M. A. Abuzaraida, "Artificial intelligence trust, risk and security management (AI TRiSM): Frameworks, applications, challenges and future research directions," *Expert Systems with Applications*, vol. 240, p. 122442, Nov. 2023. Available from: <https://doi.org/10.1016/j.eswa.2023.122442>

[21] M. Anderljung *et al.*, "Frontier AI regulation: Managing emerging risks to public safety," *arXiv*, Jan. 2023. Available from: <https://arxiv.org/abs/2307.03718>

[22] G. Falco *et al.*, "Governing AI safety through independent audits," *Nature Machine Intelligence*, vol. 3, no. 7, pp. 566–571, Jul. 2021. Available from: <https://doi.org/10.1038/s42256-021-00370-7>

[23] Okpala, C. Nnaji, and A. A. Karakhan, "Utilizing emerging technologies for construction safety risk mitigation," *Practice Periodical on Structural Design and Construction*, vol. 25, no. 2, Feb. 2020. Available from: [https://doi.org/10.1061/\(ASCE\)SC.1943-5576.0000468](https://doi.org/10.1061/(ASCE)SC.1943-5576.0000468)

[24] Ismanov, N. Qayumov, D. Mukhamadjonova, and B. Akhmadaliyev, "AI and cost management: Strategies for reducing expenses and improving profit margins in business," in *2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS)*, Chikkaballapur, India, pp. 1–7, Apr. 2024. Available from: <https://doi.org/10.1109/ICKECS61492.2024.10616761>

[25] N. V. Suresh, A. Selvakumar, G. Sridhar, and C. S., "Operational efficiency and cost reduction," in *Advances in*

Medical Technologies and Clinical Practice, 2024, pp. 262–272. Available from: <https://doi.org/10.4018/979-8-3693-3731-8.ch013>

[26] N. R. H. Chowdhury, “AI-driven business analytics for operational efficiency,” *World Journal of Advanced Engineering Technology and Sciences*, vol. 12, no. 2, pp. 535–543, Aug. 2024. Available from: <https://doi.org/10.30574/wjaets.2024.12.2.0329>