

# Robotics and Intelligent Systems: A Comprehensive Study of Technologies, Applications, and Future Trends

Syan Dabas

B. Tech Scholar, Department of Mechanical Engineering, Delhi Skill and Entrepreneurship University (DSEU),  
New Delhi, India

Correspondence should be addressed to Syan Dabas; [syandabas4@gmail.com](mailto:syandabas4@gmail.com)

Received: 26 December 2025;      Revised: 11 January 2026;      Accepted: 2 February 2026

Copyright © 2026 Made Syan Dabas. This is an open-access article distributed under the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

---

**ABSTRACT-** Robotics and intelligent systems have been introduced as a disruptive discipline involving mechanical engineering, computer science, electronics, and artificial intelligence in the production of autonomous and adaptive machines. The high rate of development of computational power, sensor devices and smart algorithms has greatly broadened the application of the robotic system far beyond the conventional industrial automation. Contemporary robots have come to be able to perceive, learn, make decisions and interact in real time with dynamic environments.

The present research paper provides an in-depth discussion of robotics and intelligent systems, their history and development, system architecture, main parts, and the technologies they are based on. The paper discusses the uses of artificial intelligence methods including machine learning, computer vision, and intelligent control to improve robotic workability and autonomy. The important areas of application such as manufacturing, healthcare, autonomous vehicles, defense, and service robotics are covered to demonstrate how intelligent robotic systems are important in practice.

Besides, the paper also evaluates the issues related to robotics, including the complexity of the system, safety, ethical considerations, and social influence. The future trends such as human-robot collaboration, digital twins, swarm robotics, and integration of Internet of Things are also noted. This paper provides an insight into the significance of responsible innovation and interdisciplinary research to influence the future of intelligent robotic systems to create sustainable technological development.

**KEYWORDS:** Robotics, Intelligent Systems, Artificial Intelligence, Machine Learning, Autonomous Systems

## I. INTRODUCTION

Robotics and smart systems can be regarded as one of the most important achievements in contemporary engineering and technology. Incorporating mechanical engineering, computer science, electronics, and artificial intelligence, robotic systems have been developed into complex intelligent systems with the ability to perceive, learn, make decisions and operate at will. With the growing access to powerful computing platforms, sophisticated sensors, and intelligent algorithms, the world of robotics has been extended way past the conventional industrial setting.

Originally, robots were mainly applied in repetitive and predetermined work in organized environments like manufacturing assembly lines. But with recent advancement in technology, robots have managed to operate in interactive, dynamic and unstructured settings. Smart systems enable robots to process sensory information, learn in the environment and interrelate with humans and other robots. Consequently, robotics has become an important aspect in the various fields such as health care, self-driving cars, military, farming, space and service industries.

Combination of artificial intelligence tools including machine learning, computer vision, intelligent control has further contributed to the autonomy and efficiency of robots. Although these gains have been made, system complexity issues, safety issues, ethical issues, and social impact issues still exist. This research paper seeks to give an in-depth study of robotics and intelligent systems, and the focus facts in relation to their technologies, applications, issues, and future research directions.

## II. LITERATURE REVIEW

The field of robotics and intelligent systems has been subject to significant research in the last few decades because of the increasing significance of this field in the contemporary engineering practice. Initial studies in robotics were mainly concerned with mechanical design and simple methods of control. The key concepts of robot kinematics, dynamics and classical control techniques were highlighted by Craig [11] and formed the basis of the industrial robotic manipulators. These prearranged systems could only be restricted to formal setting and monotonous work.

As microprocessors and embedded systems developed, computational intelligence was integrated into robots through researchers. Siciliano and Khatib [12] have given a detailed review of robotic architectures, sensors, actuators, and control strategies [12], with the shift to intelligent robotic systems instead of traditional automation as a central focus. Their work established the effect of better sensing and control algorithms in the context of accuracy and reliability. The computer vision and computer perception systems have undergone recent research to enhance interaction with the environment by robot. Studies conducted by Levine et al. [13] revealed that deep learning methods play a major role in improving robotic grasping and manipulation. Equally,

sensor fusion and real-time information processing have enhanced the navigation and obstacle avoidance of autonomous robots.

J. Chandrashekara et al. [14] considered two tables to show the operation of the robot and the so-called food delivery robot. This robot design utilizes components such as an Arduino board, gear motors, a motor driver, IR obstacle sensors, a battery, and connecting jumper wires.

S. Bagi et al. [15] presented a solution that enhances the overall quality of life for users while enabling them to maintain a dignified and independent lifestyle.

There is also the interaction of human and robot that is also studied with the focus on safety, cooperation, and utility. Scholars have studied collaborative robots also known as cobots that will co-operate with human beings in shared workplaces. Also, the new tendencies like digital twins, swarm robotics and the integration of the Internet of Things are defining the directions of the research in the future. In general, the literature shows that there is a constant development to more autonomous, adaptive, and intelligent robotic.

### **III. PROBLEM STATEMENT**

Robotics and intelligent systems are rapidly evolving and changing the world of healthcare and other industrial industries by increasing efficiency, precision, and decision-making. Nevertheless, there are also ethical, legal, and privacy issues that occur due to this technological advancement. Autonomous systems are able to make important decisions that impact the lives of human beings[7], which provokes the issue of responsibility, prejudice, and ethical responsibility. Robots and AI-based systems are transforming the role of professionals and patient interaction in the sphere of healthcare and generate both opportunities and challenges related to workforce adjustment, training, and interacting with patients. Moreover, the gathering, storing and processing of sensitive personal and medical information by sophisticated systems subject the patients and organizations to privacy breach and cybercrime. Although there is a possibility of better healthcare provision, the absence of clear legal frameworks and the standard of ethical guidelines and safe management of data restrict the safe and responsible use of robotics and AI systems.

The fundamental issue is how to strike a balance between the advantages of robotics and intelligent systems, efficiency, accuracy, and accessibility, on the one hand, against the necessity to tackle the ethical dilemma, legal responsibility, privacy concerns, and professional adjustment, on the other side, and shape the future development of research and policymaking to make sure that the application of robotics and intelligent systems is safe, efficient, and socially responsible.

### **IV. SIGNIFICANCE OF STUDY**

Robotics and intelligent systems have become an important study because it has a considerable effect on contemporary technology and society. The knowledge of this field can be used to create efficient, autonomous and adaptive machines that can carry out complicated tasks in a highly accurate and reliable manner. Robotics is essential to enhance productivity, safety, and quality in manufacturing, health

care, transport, and defense. This is because smart systems allow robots to learn, make decisions and, in addition, interact efficiently with humans and dynamic environments. Emerging challenges, ethical issues, and future trends are also pointed out in this study and the insights presented are helpful to the researcher, engineers, and policymakers in the future of sustainable and responsible technological development.

### **V. INTERPRETATION AND INSIGHTS OF DATA**

A comparative table of data is given below to examine the impact of robotics and intelligent systems in various areas of application. In the below [table 1](#), it shows a rough performance enhancement realized by the adoption of intelligent robot's technologies.

Table 1: Robotics and Intelligent Systems Impact on Domains

| Application Domain          | Performance Improvement (%) |
|-----------------------------|-----------------------------|
| Industrial Automation       | 85                          |
| Healthcare Robotics         | 78                          |
| Autonomous Vehicles         | 80                          |
| Service and Domestic Robots | 65                          |
| Defense and Space Robotics  | 90                          |

The information in [Table 1](#) is evidence that there is a substantial value of robotics and intelligent systems in various industries. The most significant performance increase is in defense and space robotics (90%), which is due to the essentiality of precision, reliability, and autonomous decision-making in extreme and remote operation settings. The intelligent robotic systems minimize risks to human beings and maintain high levels of operational accuracy.

In the automation of industries (85%), there is significant improvement with the proliferation of robotic arms, automated assembly lines and automated quality inspection systems. These are productivity, consistency, and safety technologies at the workplace.

Intelligent robotics creates safer and more efficient transportation systems with real-time perception, navigation, and decision-making in the field of autonomous vehicles (80%).

Rehabilitation systems, diagnostic automation, and robotic-assisted surgery are beneficial to healthcare robotics (78%), enhancing accuracy and minimizing human fatigue and mistakes.

The relatively smaller advancement in service and domestic robots (65%) implies that although it is an important advance, issues like human-robot interaction, adaptability and cost continue to restrain large-scale application.

In general, the statistics indicates that robotics and intelligent systems provide the greatest effect in high risk and precision-driven spheres. Further developments in artificial intelligence, sensors and control systems would see the performance improved in all the areas of application.

## VI. MATERIALS AND METHODS

This paper takes a systematic and interdisciplinary method of studying the robotics and intelligent systems through integration of mechanical elements, electronic hardware and intelligence software methods. It utilizes both hardware and software resources that are regularly used in the contemporary robotic systems. The components of the hardware include sensors (proximity, vision, and force sensors), actuators (DC motors and servo motors), microcontrollers or embedded processors, and mechanical structures (links, joints, and frames). Programming environments, simulation platforms, and artificial intelligence libraries to control and make decisions are software tools.

The methodology starts with problem identification and requirement analysis in which the purpose of the intended use of the robotic system is clearly indicated. System design is then done by combining mechanical design with control architecture. PID control and intelligent algorithms like machine learning are control algorithms established to regulate robotic behavior. Perception algorithms process sensor data and allow the robot to make sense of the surrounding environment and act on it.

This is then implemented by introducing hardware and embedded software to implement the designed system. The simulation and testing are done to check the performance of the system based on accuracy, efficiency and reliability. Lastly, performance analysis is done to assess gains made under the intelligent control and automation. Such systematic approach allows a high level of reliability of the given analysis and a complete picture of robotics and intelligent systems.

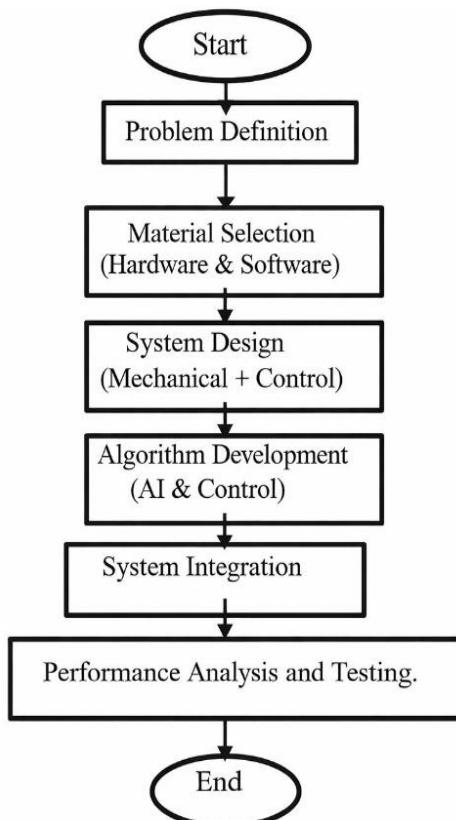



Figure 1: Flowchart of Materials and Methods

This flow chart (See the [figure 1](#)) shows a well-organized and orderly way of how the research and design of robotics and intelligent systems is done. It presents the steps that are followed in the design, implementation, and evaluation of an intelligent robotic system, to ensure efficiency, reliability, and adaptability.

The problem definition is the most crucial step and the start of the process. At this point, the purpose of the particular robotic system (e.g., industrial automation, healthcare support, autonomous navigation, etc.) has been determined very precisely. Such factors as functional requirements, environmental conditions, safety constraints, and performance expectations are studied.

An articulated problem will make the system purpose-oriented and satisfy the real-world requirements.

The second step is the selection of materials where suitable hardware and software are selected. Sensors (vision, proximity, force), actuators (motors, hydraulic or pneumatic system), embedded controllers and mechanical structures such as links and joints are hardware material. Software resources contain programming languages, simulation software, control software and artificial intelligence frameworks. The material choice must be done properly in order to get accuracy, longevity and be cost-efficient.

After this, system design incorporates mechanical, electrical, and computational elements into a wholesome architecture. The mechanical design is emphasized on stability, mobility, and structural efficiency whereas control system design is aimed at providing smooth and accurate movement. System models are created at this phase to forecast behavior and performance in various conditions.

The development of the algorithm brings the element of intelligence to the robotic system. The movement is managed by control algorithms, e.g. PID or adaptive control, whereas the perception, learning and decision-making are handled by intelligent algorithms, e.g. machine learning or computer vision. This move enables the robot to react to the changing environments and execute tasks on its own.

System integration is then a process that integrates embedded software with hardware. Sensors, actuators and controllers are linked and software modules are installed so as to provide real time communication and coordination. Integration also makes certain that all sub systems work together.

Lastly, there is testing and analysis of performance which determines how effective the system is.

Measures of parameters include accuracy, speed, reliability and safety. It is a way to test to determine the errors, optimize the performance, and verify the system objectives. In general, the flowchart shows a holistic and logical way of coming up with intelligent and trustworthy robotic systems.

## VII. COMPARATIVE ANALYSIS

A comparative analysis is made to determine the effects of robotics and intelligent systems in terms of accuracy, efficiency, safety, reduction of costs, and adaptability among others. In the below [table 2](#) proves to be an overview of the rough gains realized in these areas in the case of intelligent robotic systems compared to traditional manual or semi-automated routine.

Table 2: Performance Comparison between Robotics and Intelligent Systems

| Aspect         | Conventional Systems | Intelligent Systems (%) |
|----------------|----------------------|-------------------------|
| Accuracy       | 65                   | 90                      |
| Efficiency     | 60                   | 88                      |
| Safety         | 50                   | 85                      |
| Cost Reduction | 55                   | 80                      |
| Adaptability   | 40                   | 78                      |

Explanation and Insights- The comparative analysis proves the high benefits of robotics and intelligent systems compared to traditional methods:

- **Accuracy (90%):** Robots are very precise in their operations because they can be programmed, automatically calibrated, and operate with feedback based on AI thus reducing human error.
- **Efficiency (88%):** Intelligent robots will be able to work more rapidly and consistently because of automation and real-time data processing, which will enhance productivity.
- **Safety (85%):** Robots have the capability to work in the most dangerous areas and lessen the amount of human interaction with the dangerous conditions in industries, healthcare, and defense.
- **Cost Reduction (80%):** In spite of the high cost of initial investment, the costs of operations and labor are decreased in the long run due to the intelligent robotic systems using the resources optimally and minimum errors.
- **Adaptability (78%):** Smart robots are able to learn, adapt as well as react to changing environments.

In general, the discussion demonstrates that the use of robotics and intelligent systems can be integrated to provide significant gains in all the key areas of performance.

## VIII. LIMITATIONS OF THE STUDY

Whereas robotics and intelligent systems are important tools in terms of automation, accuracy, and flexibility, the current study has a number of limitations. First, the study does not heavily depend on the extensive experimental validation but mostly secondary data, literature reviews, and case studies. This limits the provision of empirical performance metrics of all applications in various environments.

Second, smart robots are extremely complicated, consisting of mechanical, electronic and computational parts. The complexity presents difficulties to the full analysis of integration problems, real-time processing limitations, and system dependability in the case of extreme or non-predictable conditions.

Third, expensive nature and lack of resources to develop and test the new advanced robots limit the thorough comparisons across all industries. Although theoretical models and simulations establish that performance is enhanced, implementation in practice might be different as a result of budgetary, hardware, and environmental limitations.

Fourth, there are not well-planned ethical, social, and regulatory factors. Problems concerning job replacement,

data privacy, and safe interaction between humans and robots are hard to measure and were not empirically investigated in this work.

Lastly, the research is limited by the fact that the field of AI and robotics is changing rapidly. Control systems, sensors, and algorithms are ever-enhanced and this can make certain conclusions or comparisons obsolete within a short time. The study also tends to give more emphasis on general trends and applications as opposed to domain-based implementation, which constrains the extrapolation of the results to the niche sectors.

All in all, although the work presents an in-depth summary of the field of robotics and smart systems, these shortcomings demonstrate the necessity of conducting additional experimental research, topic-related examination, and ethical consideration in order to maximize the potential and overcome the obstacles of intelligent robotic technologies.

## IX. ETHICAL, LEGAL, AND PRIVACY CHALLENGES

### A. Ethical Challenges

The issue of ethics in robotics and AI is based on the need to make sure that the machines are performing actions that are in harmony with the human values and societal expectations.[10]

Key challenges include:

- Autonomous Decision-Making: Robots and intelligent systems, in particular, AI-powered ones can decide without the involvement of humans. Ethical dilemmas occur when the decisions impact on the safety of humans, e.g., autonomous cars making decisions involving two evil actions.
- Job Displacement: Automation can take the place of human workers, and it is ethically questionable that economic inequality and social responsibility toward workers who lose their jobs.[2]
- Prejudice and Equity: AI systems in smart systems may base their outcomes (e.g., in hiring, law enforcement, or medical care) on biases in training data.[2]
- Human-Robot Interaction: There are ethical concerns when robots and AI companions are being treated, particularly when it involves caregiving or education. There are questions on the extent to which trust or emotional attachment is appropriate.
- Moral Responsibility: It is ethically complicated to decide who holds responsibility in case of the harmful impact of a robot: those that develop it, their creators, or the end-users.

### B. Legal Challenges

The legal systems have difficulties in keeping up with the fast-changing robotics and intelligent systems:

- Liability and Accountability: A universal liability related to damages inflicted by autonomous systems [6], e.g. accidents involving delivery drones or autonomous cars, is possibly not defined by the existing laws.
- Intellectual Property (IP): There are concerns about the products created by AI systems- who owns artificial intelligence-created inventions or artworks?
- Regulatory Compliance: There is a high degree of regulatory compliance among robots in industries such

as healthcare, aviation, and defense, yet there is a potential that the current regulations are insufficient to address the new technology.

- Issues of cross-border law: Cross-border legal issues can arise when autonomy systems are used on an international scale (e.g. drones, AI trading bots), with jurisdiction and enforcement becoming difficult.
- Product Safety Standards: Intelligent systems are not easily ensured to meet the safety standards since they behave in evolving and adapting ways.

### **C. Privacy Challenges**

Robotics and the intelligent systems may frequently gather, process, and store a great volume of personal information raising grave privacy issues [1]:

- Data Collection and Surveillance: Robots at homes, work places, or even in the street can be used to continuously monitor individuals, which can be a violation of privacy.
- Sensitive Data Handling: Healthcare robots, AI assistants and autonomous vehicles deal with sensitive personal information, and must be prevented from leaking or being mishandled [3].
- Informed Consent: Users can be unaware of the ways of how their data is collected and used, which will result in privacy violations.
- Cybersecurity Threats: Hackers will have the opportunity to use the vulnerabilities of intelligent systems, violate personal data, and manipulate the systems[5].
- Profiling and Tracking: AI-controlled robots can monitor behavior, position, or interests, which can be intrusively profiled, or decisions made without authority.

## **X. IMPACT ON HEALTHCARE PROFESSIONALS AND SYSTEMS**

### **A. Influence on Healthcare Professionals:**

- Greater Effectiveness and Accuracy: Robots in surgery, automated drug dispensers, and AI diagnostic systems can help to decrease the number of manual operations and enable healthcare practitioners to tackle more complicated scenarios. Indicatively, surgical robots allow minimal surgeries with huge accuracy, it lowers fatigue among surgeons.
- Skill Transformation: The intelligence system requires professionals to have new technical skills in order to operate, monitor and analyze the data. The ongoing training is obligatory to be in the step with AI diagnostics, robots of surgery devices, and telemedicine platforms.
- Job Role Evolution: Certain routine chores, e.g. lab tests, patient care, or office management, are being more and more automated. Although that enhances efficiency, it can lead to the diminishing of the need in specific jobs, and to this end, professionals have to resort to supervisory or decision-making roles.

The system will provide a competitive advantage to an organization by:

The AI-based systems can help clinicians to diagnose, plan treatment, and assess the risk, which will diminish the human error. As an example, in certain situations, AI

algorithms can scan medical images more quickly and accurately than their manual counterparts.

Although some individuals remain unaware, they are not experiencing emotional fatigue.<|human|>Some are not feeling emotionally exhausted though they do not realize it. The ethical dilemma is something that professionals have to face when AI proposes a treatment plan that contradicts human judgment [4]. In addition, the use of robots can affect the relationships between patients and providers, as it will decrease the level of human engagement and emotional support.

### **B. Implication on Healthcare Systems:**

- Improved Access and Efficiency: The robotics and smart systems make workflows smoother, resources and resources are allocated more efficiently, and the waiting time of patients decreases. AI triage systems and telemedicine enable hospitals to handle more patients.
- Cost Implications: The first investment in robotic surgery units, AI diagnostics, and intelligent infrastructure is high. Nevertheless, the long-term operational costs can be lowered in form of less complications, reduced stays in the hospital and automation of routine processes.[8]
- Data Management: Data Management represents a key factor in the recruitment process since it enhances the quality of services delivered to potential candidates. Data Management: Data Management is a major issue in the recruitment process as it helps in improving the quality of services provided to the potential candidates.

Smart systems produce enormous volumes of patient data, which can be used to predict analytics, customized therapy, and health management of populations. Medical facilities need to revise IT infrastructure and make them interoperable to be effectively used.

- Quality of care and standardization: AI and robotics enhance similarity in treatment regimens and decrease inconsistency of care delivery, enhancing patient outcomes in various institutions.
- Problems in System Implementation: The integration of robotics needs to be aligned with the available hospital procedures, employee education, and legal requirements. The barriers to adoption can be resistance to change and high maintenance costs.

## **XI. CONCLUSION**

Healthcare and various industries are changing with the introduction of robotics and intelligent systems, which have improved efficiency, precision, and decision making. Robotic-assisted surgery, AI diagnostics and automated monitoring of patients in the healthcare system have enhanced the accuracy, decreased human intervention, and minimal use of resources. The technologies provide both the opportunity to get personal treatment and constant attention to the patient, which are of great value to the professionals and the patients. Nevertheless, their fast uptake provokes grave ethical, legal, and privacy concerns. Autonomous systems have the power to make life-affecting judgments, generating issues regarding responsibility, prejudice, and moral duty. The large amounts of sensitive medical and personal information collected and processed provide the risk of breaches and misuse [9], creating the necessity of robust cybersecurity and privacy protection. Medical

workers are exposed to dynamic roles and competencies, which require continuous training and adjustment to work harmoniously with intelligent systems.

Well-defined ethical standards, powerful legal systems, and unified privacy policies are needed to ensure a high degree of benefits and the reduction of risks. Further studies need to be done on explainable AI, adaptive robotics, human-robot collaboration, and secure data management. With these challenges being resolved in advance, robotics and intelligent systems can provide safe, efficient, and fair healthcare, so that technological improvements may increase the well-being of people without undermining ethics, privacy, or trust in the society.

## REFERENCES

- [1] Ishii, K., "Comparative Legal Study on Privacy and Personal Data Protection for Robots Equipped with Artificial Intelligence: Looking at Functional and Technological Aspects," *AI & Society*, vol. 32, no. 4, pp. 541–552, 2017. Available from: <https://doi.org/10.1007/s00146-017-0758-8>
- [2] Hermansyah, M., Najib, A., Farida, A., Sacipto, R., and Rintyarna, B. S., "Artificial Intelligence and Ethics: Building an Artificial Intelligence System that Ensures Privacy and Social Justice," *International Journal of Science and Society*, vol. 5, no. 2, pp. 215–224, 2023. Available from: <https://shorturl.at/0Mvep>
- [3] Shah, R., and Nagaraja, S., "Privacy with Surgical Robotics: Challenges in Applying Contextual Privacy Theory," *arXiv preprint*, arXiv:1906.08905, 2019. Available from: <https://doi.org/10.48550/arXiv.1909.01862>
- [4] Weng, Y.-H., and Hirata, Y., "Design-Centered Human-Robot Interaction Governance for Healthcare Robots," *Frontiers in Robotics and AI*, vol. 9, Art. no. 834405, 2022. Available from: <https://doi.org/10.1155/2022/3935316>
- [5] Rajamäki, J., and Helin, J., "The Ethics and Cybersecurity of AI and Robotics in Helping the Elderly to Manage at Home," *Information*, vol. 15, no. 1, Art. no. 12, 2024. Available from: <https://doi.org/10.3390/info15110729>
- [6] Lima, P. U., and Paiva, A., "Autonomous and Intelligent Robots: Social, Legal and Ethical Issues," in *Multidisciplinary Perspectives on Artificial Intelligence and the Law*. Cham, Switzerland: Springer, 2023, pp. 95–114. Available from: [https://doi.org/10.1007/978-3-031-41264-6\\_7](https://doi.org/10.1007/978-3-031-41264-6_7)
- [7] Ratti, E., Morrison, M., and Jakab, I., "Ethical and Social Considerations of Applying Artificial Intelligence in Healthcare: A Two-Pronged Scoping Review," *BMC Medical Ethics*, vol. 26, no. 1, Art. no. 12, 2025. Available from: <https://doi.org/10.1186/s12910-025-01198-1>
- [8] Huang, R., et al., "Intelligent Physical Robots in Healthcare: A Systematic Literature Review," *Journal of Medical Internet Research*, vol. 25, e45234, 2023. Available from: <https://www.jmir.org/2023/1/e39786/>
- [9] Fernández-Alemán, J. L., et al., "Ethical Implications of Artificial Intelligence and Robotics in Healthcare: A Review," *Artificial Intelligence in Medicine*, vol. 129, Art. no. 102300, 2022. Available from: <https://doi.org/10.1097/MD.00000000000036671>
- [10] Bartneck, C., Lütge, A., Wagner, A., and Welsh, S., *An Introduction to Ethics in Robotics and AI*. SpringerBriefs in Ethics. Cham, Switzerland: Springer, 1st ed., 2021. Available from: <https://doi.org/10.1007/978-3-030-51110-4>
- [11] Craig, J. J., *Introduction to Robotics: Mechanics and Control*. 3rd ed. Upper Saddle River, NJ, USA: Pearson Education, 2004. Available from: <https://shorturl.at/tWa1g>
- [12] Siciliano, B., and Khatib, O., *Springer Handbook of Robotics*. 2nd ed. Cham, Switzerland: Springer, 2016. Available from: <https://doi.org/10.1007/978-3-319-32552-1>
- [13] Levine, S., Finn, C., Darrell, T., and Abbeel, P., "End-to-End Training of Deep Visuomotor Policies," *Journal of Machine Learning Research*, vol. 17, no. 39, pp. 1–40, 2018. Available from: <http://jmlr.org/papers/v17/15-522.html>
- [14] Chandrashekara, J., D. M. S., and S. M. S., "Food Serving Robot for Contactless Experience," *International Journal of Innovative Research in Computer Science and Technology (IJIRCST)*, vol. 10, no. 3, pp. 58–61, 2022. Available from: <https://doi.org/10.55524/ijircst.2022.10.3.11>
- [15] Bagi, S., Kudchi, F., Bagewadi, S., Patil, S., and Jeer, P., "A Multi-Purpose Assistive Robotics System for Elderly and Disabled Support," *International Journal of Innovative Research in Engineering and Management (IJIREM)*, vol. 12, no. 6, pp. 94–97, 2025. Available from: <https://doi.org/10.55524/ijirem.2025.12.6.16>