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ABSTRACT 

An accurate numerical method is proposed for the solution of 1-D 
initial-boundary value wave problem. It is of finite-difference 
type, where a pre-concerted grid is constructed using a specific 
time discretization. The ultimate goal is the minimizing of global 
error. Keeping of the stability-accuracy balance is the key element 
of the new proposal. It is particularly useful in case of large 
integration domains. The most important part of the method is 

implemented and tested in Matlab, and the results are compared 
with those of classic difference method. 

Keywords  
Initial-boundary value wave problem, Triangle of determinacy, 
Stability limit, Stability threshold, Non-uniform grid.   

1. INTRODUCTION 

There is an important class of engineering problems modeled by 
wave equations with known initial and boundary conditions. The 
explicit second order Finite Difference Method, (hereafter FDM), 
is often used to solve numerically such problems and in this case, 
time discretization is determined by the stability condition. But 

the global accuracy of FDM is low for problems involving large 
domains. The performance of computational processing, referred 
as efficiency, is also a big problem for large value of time 
variable. Accuracy and efficiency are the most urgent problems in 
wave problems. Many different differences schemes are proposed 
in literature to reduce the above cited undesirable effects. The 
locally adjusted time step strategies, like in [2] and [4], reduce 
considerably the computational cost involved. More sophisticated 

method, that combine variable grids with locally variable time-
steps are used for big problems in seismic modeling. The 
staggered-grid technique, at beginning presented in [5], and 
developed further in [3], is four times as accurate as the 
conventional regular grid without increasing the amount of 
calculation. The accuracy and efficiency of finite-differences can 
be significantly improved combining staggered-grid with high-
order finite-differences, but the algebra of these methods becomes 
intractable, and their implementation more difficult. 

In this paper an 1-D wave problem  is considered, so the accuracy 
matter prevails on that of efficiency. In next section we 

investigate the complex relation of global accuracy with the time 
and space discretization parameters of FDM. Based on findings in 
this section, a specific time discretization is proposed in section 3, 
which minimize the global error when applied for 1-D wave 

problem without boundary conditions. The non-uniform grid 
received by this discretization is used to solve the original initial-
boundary value wave problem. Keeping of the stability-accuracy 
balance, when working near the stability limit of finite-
differences, is the key element of new proposal. In case of non-
homogenous equations the method operates in both sides of 
stability threshold parameter. The most important part of the 
method is tested in Matlab, and the results are compared with 
those of FDM. 

2. GLOBAL ACCURACY OF FDM          

VERSUS ITS LOCAL ACCURACY  

We will consider here the initial boundary-value problem for non-
homogenous wave equation, with time-dependent boundary 
conditions, namely, 

-   ( ,  )u u F x t
tt xx

                                                        (1) 

 with initial conditions. 

 
       ,0 ,  u ,0   , 0 ,tu x f x x g x x l                           (2) 

and time-dependent boundary conditions 

(0, ) ( ),  ( , )  q(t),   0u t p t u l t t T                                            (3) 

We will consider also the associated initial value problem 

-   ( ,  )u u F x t
tt xx

                                                      (1a) 

 with initial conditions. 

       ,0 ,  u ,0   tu x f x x g x                                       (2a) 

It is difficult to obtain analytical solution for the problem (1-3), 
see e.x. [6]. Each problem requires specific treatment, moreover, 
analytical solutions in most cases are complicated, and sometimes 
inconvenient for practical use.   

Denote by [0 ] [0 ]D l x T  the physical space of variables x and t 

in (1-3). A grid G0 is obtained by discretizing the interval 0 ≤ x ≤ l 

into m subintervals each of width h = l/m and  interval 0 ≤ t ≤ T  

into N subintervals each of width k = T /N. FDM is given by the 
following equations 
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for 1,2, ,  1, , -1,j N i m L L  and λ = k/h. 

 

The local error of method (4-6) is O(h2 + k2 ), but it is numerical 
stable only if  

   = k/h ≤ 1                                                    (7) 

The global accuracy of FDM has a complex relation with 
discretization parameters h and k. By the example below we will 

get some insight on this relation, using also the results of 
numerical experiments. Consider the initial-boundary value wave 
problem 

-   0u u
tt xx

  

 with initial conditions. 

   
4

,0   ( - ),  ,0   0, 0 ,
2

H
u x x l x u x x l

t
l

     

and simple boundary conditions   

(0, )  ( , )  0,   0u t u l t t T     

The problem models the small vibrations of a string which is fixed 
at x = 0 and x = l. The initial displacement of the string is a 
parabolic segment with maximum displacement H small (In the 
demonstration below, we have taken H = 0.02, and l = 1.). The 
initial velocity is supposed zero. The exact solution of the 
problem, found by Fourier method, is 

 
   

3 3

0

2 1 2 132 1
sin  cos

(
,

2
 

1)
n

u x
n nH

x t
n

t
L L

 







 



  

The FDM (4-6) is used in solving the problem for a range values 
of m and N, N ≤ m  (k ≤ h), as in Table 1. The proper selection of 
m and N is done for the best performance. The global accuracy is 

computed for each case as || uiN - u(xi,1)||2 (L2-norm), i = 1, 2, ..., 
6, and is presented in Table 1. In all experiments done with other 
examples, the corresponding tables look similar to Table 1.  

 

Table 1: Global errors for the FDM solution at point (x0=0.5, t0=1), for different values of m and N 

     N 

m 
                4                              8                            12                           16                           20                            24 

4 

8 

12 

16 

20 

24 

   8.8459e-17   1.0054e-03   1.1471e-03   1.1913e-03   1.2109e-03   1.2214e-03 

            0   1.4706e-16   3.2656e-04   4.4412e-04   4.9249e-04   5.1678e-04 

            0            0   1.6419e-16   1.8289e-04   2.4743e-04   2.8337e-04 

            0            0            0   2.2232e-16   1.1713e-04   1.6145e-04 

            0            0            0            0   1.9645e-16   7.9701e-05 

            0            0            0            0            0   3.8529e-16 

 

We could read through the results of Table 1: 

a) For constant value of step size k (N - constant), the error 
decreases as h is decreases. This was expected. We can consider h 
as parameter of accuracy. 

b) For constant value of step size h ( m - constant), the error 
increases (although slightly) as k decreases. But the decreasing of 
k reduces the local error O(h2 + k2 ), and also improves the 
stability according to (7) , so the increasing of global error was 
not expected. 

c) For h = k, the global errors are extremely lower than the local 
errors would lead us to believe.  

We will try to reason here the evident facts b) and c). In the 

Figure 1 below, OLM is the triangle of determinacy, R is an 
arbitrary point inside it, and PQR is the triangle of determinacy 
for point R. As the solution at point R is fully determined by the 
initial conditions in segment PQ, it is reasonable to assume that it 
would be meaningful for a numerical method to use only the 

approximations inside triangle PQR, for approximating in R. But 
if k > h, the integration method moves out the triangle PQR since 
in its first step. If k < h, we could never reach point R without 
using some approximations outside the triangle PQR. 

 

Figure 1:  Triangle of determinacy of the solution 
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Roughly speaking, the number of these approximations is 
proportional to the difference h - k. What it happens inside the 
triangle OLM is spread outside it, meanwhile the boundary 
conditions begin to influence the solution. That explains the 
situation in case b). In special case c) when k = h, the 
approximation at point R does not use any previous 
approximations outside triangle PQR. The approximation is based 
only on the initial data that influence the solution at point R, and it 

uses all these data. This case seems meaningful and 
mathematically correct. However, the hint for the very accurate 
results of case c) is beyond this explanation. The local error of 
FDM (see e.x. [1]), can be written as 

4 4

2 2

4 4

( , ) ( , )2

4!

i j i ju x t u x t
k h

t x

  
     

6 6

4 4

6 6

( , ) ( , )2

6!

i j i ju x t u x t
k h

t x

  
      

L  

By  differentiating the homogeneous variant of equation (1) step 
by step, and after a few algebraic manipulations, we receive   

2 2

2 2

( , ) ( , )
,  2,3,

n n

i j i j

n n

u x t u x t
n

t x

 
 

 
L                       

(8) 

Clearly the local error becomes zero for h = k, so the method (4-6) 
has no practically local error in case of homogenous equation, and 
the only errors are those due to the approximations of ui0 and  ui1 
in formulas (4-5). From the above discussion, the method (4-6), 
for h = k, seems to be rational for the solution of homogenous 
variant of problem (1)-(2)-(3), provided that the boundary T be a 
moderate number. But for large T, as it will be seen in the next 

section, the global accuracy of the method is decreased as T is 
increased. This is mainly because the theoretic qualities (8) do not 
hold numerically, they becomes approximations. We conclude 
this section emphasizing an important fact related to formula (7). 
For constant value of k, if we want to improve the stability of the 
method (4-6), we have to increase the value of h, this is to reduce 
the accuracy. If we want to increase the accuracy, we have to 
reduce h, but the best we could do is to take h = k. Stability versus 

accuracy: The effort to increase accuracy of many numerical 
methods is restrained by the demand to maintain their stability. 
So, for large value of T, the global accuracy of FDM has a 
complex relation with h, k, and λ. A good balance/compromise 
accuracy-stability, may be the key-factor of success.  

A specific grid for the solution of initial-boundary value problem 
(1-3), different from the uniform grid of FDM, is proposed in the 
next section, based on the above reasoning. 

3. THE CONSTRUCTION OF A GRID 

BASED ON GLOBAL ERROR 

MINIMIZATION  

Consider initial wave problem (1a)-(2a). Let M0(x0, t0) be an 
arbitrary point, with t0 >> 0, as in Figure 2. This is the point where 
the solution of problem (1a)-(2a) will be approximated. We can 
divide three cases to reach the point M0, by applying the following 
difference method: 

( ),  ,0

for  0,1,...,2 1

u f xi i

i m



 
                                      (9) 

2 2(1  ) ( ) ( ( )  ( )),1 1 12

2
( ) ( ,0)

2

u f x f x f xi i i i

h
kg x F xi i


     



          (10) 

2

2 22(1  )   (  ), 1 , -1, 1,

 ( , ), -1 i i

u u u ui j i j i j i j

u h F x ti j

      

 
              (11) 

for 2, ,  1, 2, ,2 1,j m i j j m j     L L  and λ = k/h. 

 

Figure 2:  Three cases to reach the point M0 by FDM 

Case a) Using m steps of the processes (9-11), inside the triangle 
of determinacy ABM0, with h = k = t0/m;   

Case b) Using m steps of the processes (9-11), inside the triangle 
PQM0, with h > k; 

Case c) Using m steps of the processes (9-11), inside the triangle 
RSM0, with h < k; 

The step size k = t0/m  is the same for the three cases. The cases a) 
and b) are both valid and they have their advantages and 
disadvantages. Case b) is "more" stable because  λ = k/h  < 1, but 
case a) is more accurate because step size h in case a) is less than 
that in case b). However the two cases are in a equilibrium 
balance and by routine  numerical experiments it could be verified 

that they produce the same global accuracy at point M0, for a wide 
specter of values of t0. But the global accuracy of this difference 
method for large values of t0 is poor. The case c) is more 
interesting. Clearly the process in case c), and in case of 
homogenous equation, is unstable, so it is not valid in this case. 
But as the stability analysis consider only homogeneous domains, 
it may be expected that under specific conditions, the case c) may 
be stable for non-homogeneous equation. It will be seen below. 

Let M(x0, t) be another arbitrary point with t in the neighborhood 
of t0, as in Figure 3 or 4 below. Denote by ABM the triangle of 
determinacy for point M of Figure 3, and by PQM the triangle of 
determinacy at point M of Figure 4. Denote t1 = (t - t0). There 
exists α, with |α| small, such that t1 = αt0. It can be seen that α is 
positive in case of Figure 3 and negative in case of Figure 4. Let 
be n =1, 2, ..., 10. Denote m = 2(n+1). Take h = t/m. Denote             
ϵ = 2α/(m(m-1)). Consider the vector  
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kk = [h, h-ϵ, h-2ϵ, ... , h-(m-1)ϵ]. 

It can be verified that | ϵ |  < h/(m-1), so the coordinates of vector 
kk are all positive decreasing numbers if α > 0, and positive 
increasing if α < 0. It can be verified also that:  

h+(h - ϵ) + (h - 2ϵ) + ..., + (h-(m-1)ϵ) = t0. 

Denote λ(j) = kk(j)/h, j = 1, 2, ...,m. 

 

 

Figure 3:  Approximating the solution of problem  

    (1a)-(2a) at M0(x0, t0):  Case α > 0 

 

Figure 4:  Approximating the solution of problem 

  (1a)-(2a) at M0(x0, t0):  Case α < 0 
 

Consider the following finite-difference method for 
approximating of the solution of problem (1a)-(2a) at point M0 

( ),  i=0,1,...,2m+1,0u f xi i                                                      (12) 

2(1) 2(1 (1) ) ( ) ( ( )  ( )),1 1 12

2
( ) ( ,0),    

2
  2,  3,  ... ,  2m

u f x f x f xi i i i

h
kg x F xi i i


    

  



       (13)
 

 

2 22(1 (2) )  (2) (  ),2 ,1 -1,1 1,1

 ( ( ( )),       ,0   3,  4,  ... ,  2m 1

u u u ui i i

i
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u f x ii

 



    

                 (14)
 

 

2 22(1 ( ) )  ( ) (  ), 1 , -1, 1,

 ( ( ) / ( -1)), -1 , , -1

u j u j u ui j i j i j i j

u u u kk ji j i j i j

 



     

         (15)
 

j = 2, 4, ... , m;  i = j+1, j+2, ... , 2m-j+1.               

The equation (15) and its specific case (14) can be obtained by 
using the centered-difference quotient for the second partials, or 
simply writing the equation (11) in the context of Figure 5 below. 
This Figure corresponds to the case when α and therefore ϵ are 
positive. The analogous figure can be built for the case when α 
and therefore ϵ are negative. But the algebra related to deriving of 
formula (15), and also formula (14), includes both two cases. 

 

Figure 5: Scheme of nodes for computation  

at time tj+1, case α>0 

 
In Figure 5, the symbol ● stands for the node where the solution is 
being approximated in the jth step. The symbols    are used to 
denote the nodes where the solution was approximated in the 

previous steps. The symbol ○ stands for the point (xi, tj-kk(j)), 

which is the symmetric of the node-point (xi, tj+kk(j)), in relation 

to the line t = tj. Also, according to the other notations in Figure 5, 
we can write: kk(j) = tj+1-tj , kk(j-1) = tj-tj-1, and λ(j) = kk(j)/h. 

Writing the equation (11) for the points (xi, tj+1), (xi-1, tj), (xi, tj), 

(xi+1, tj), and ( i jx , t - kk(j) ) we obtain 

i j
2 2u =2(1 (j) )u  (j) (u + u ) u(x , t - kk(j))i,j+1 i,j i-1,j i+1,j   

 
(16) 

The value i ju(x , t - kk(j))  can be approximated by linear 

interpolation of nodes u  and ui,j-1 i,j as it follows: 

i ju(x ,  t kk(j)) (u (kk(j 1) kk(j))(u u ) / kk(j-1))i,j-1 i,j i,j-1     

(17) 

Remembering that kk(j 1) kk(j) ,   and replacing the relation 

(17) into (16) we receive the equation (15). 

The method (12-15) is presented symbolically by the red dotted 
trajectories in Figures 3 and 4. For value of α going to zero, the 
two red dotted trajectories, one being concave and the other 
convex, will converge to the same blue trajectory AM0B, which 
symbolizes the classic FDM (9-11). This last can be obtained 
from (12-15)  for α = 0. 

It can be seen that for a given α < 0, method (12-15) uses a 
constant space step size h(α) = t/m > h, and a variable time step 

size  kk(j) = h + (j-1)ϵ > h, so (j) kk(j) / h  > 1 for j ≥ 2. That 
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means decreased accuracy (but increased efficiency) compared to 
FDM, and instability for the case of homogenous wave equation. 
It may look surprising to consider the case when α is negative. But 
as it will be seen in Example 2 below, this case, although looking 
as contrived, would results superior to the case when α is positive. 
For certain α we apply method (12-15) and find an approximation 
for u(x0, t0). Denote this approximation as u(α). The global error 
can be computed as g(α) = |u(α)-u(x0, t0)|. Denote by α that value 

of α in a neighborhood of zero, for which the function g(α) takes 
its smallest value. Different strategies from global optimization 
can be used to find α. It can be proved that α is depended from t0, 
but not from x0.  
Now we return our attention at the initial-boundary value problem 
(1-3). We choose an arbitrary sufficiently refined small value for 
h. For t0=T, we find as above the optimal value α(T). Clearly, 
based on h and α(T), a non-uniform grid G is created in the 

domain [0 ] [0 ].D l x T The method (4-6) can be easily adopted 

to solve the problem (1-3) in this pre-concerted grid. Other 
matters related to this adaptation will be discussed in next section. 

4. MATLAB IMPLEMENTATION AND 

NUMERICAL RESULTS  

The basic part of the Proposed Finite Difference Method 
described in section 3, hereafter referred as PFDM, is 

implemented in Matlab. Initial value problem (1a)-(2a) is solved 
for two cases of equation, homogeneous and non-homogenous. 
Approximations of the solution are provided at the points      
M(x0, t0), for some typical values of t0, selected for good 
performance. The corresponding optimal values α(t0) and global 
errors g = g(α(t0)), are computed in each case. The problems are 
solved also by classic FDM in the same conditions as above. In 
order to compare different results, it makes sense to use the same 

space step size h in all integrations done. That's why the variable 
m = 2(n+1) and t0 in Tables 2 and 3 below, change both 
progressively.  

4.1 Homogenous Case, Example 1 

Consider the initial value homogeneous wave problem 

 -   0tt xxu u   

 with initial conditions  

    ,0   ,  ,0   sintu x x u x x   

The exact solution is   

 sin sinu x x t   

The numerical results, as described above, for the arbitrary point  
x0=100, are presented in Table 2. Global errors for FDM and 
PFDM are presented in the fourth row of this table. 

Table 2: Global errors for the FDM and PFDM solutions at points (x0=100, t0), for different values of t0 

t0 100 200 400 800 1600 3200 

α 0.37656 0.10576       0.22992      0.025184      0.056184     0.0046953 

n  6 7 8 9 10 11 

FDM 

PFDM 

2.8068e-02 

2.2737e-06 

4.8407e-02 

2.5508e-06 

4.7166e-02 

7.4332e-05 

4.9553e-02 

7.6287e-05 

4.4412e-02 

6.3759e-05 

5.3149e-02 

5.8329e-05 

 

Clearly PFDM is superior on FDM for all the specter values of t0 
used. We can see that all α are positive. This was expected: For    

α < 0 PFDM is unstable because in this case, (j) kk(j) / h  > 1 

for j ≥ 2.  From the Table 2 we can see also that the global errors 

of FDM are in their normal values, and cannot be compared with 
very accurate results of this method for small values of t, 
presented in Table 1.  

4.2 Homogenous Case, Example 2 

Consider the initial value non-homogeneous wave problem 

 
-   2tt xxu u   

 with initial conditions  

    2,0   ,  ,0   costu x x u x x   

The exact solution is   

 2 22 sintcosxu x t    

The corresponding table of Table 2 for Example 2 is the following 
table. 

Table 3: Global errors for the FDM and PFDM solutions at points (x0=100, t0), for different values of t0 

t0 100 200 400 800 1600 3200 

α -3.021e-04   -2.618e-04   -1.314e-04   6.857e-05   -1.038e-05    1.831e-05 

n 6 7 8 9 10 11 

FDM 

PFDM 

4.7798e-02 

1.3702e-04 

8.2435e-02 

1.4350e-04    

8.0322e-02 

5.2136e-05    

8.4386e-02 

1.2396e-04    

7.5634e-02 

6.7073e-04    

9.0503e-02 

1.4093e-04 
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The results of Table 3 may look surprising. In most of the cases 
the optimal values α that minimize the global error are negative, 
meantime in case of homogenous equation all optimal α found 

were positive. In case of α < 0, as it was mentioned before, 

(j) kk(j) / h  > 1 for j ≥ 2. Stability analysis consider only 

homogeneous case. We see here that non-homogeneous case 
allows the use of less refined time discretizations, than 
homogeneous case does. According to the results of Tables 2 and 
3, PFDM has at least two correct decimals more than FDM. The 
global space order of convergence and some other details of 
PFDM, its full implementation and further numerical results will 

be reported by the present authors in a coming paper.    

5. CONCLUSIONS   

An accurate numerical method of the finite-difference type is 
proposed and developed for the solution of 1-D wave equation. 
For homogenous equations it operates in the left side of stability 
limit λ = 1. For non-homogenous case it operates, in most of the 
cases, in the right side of this limit. The basic part of method is 
implemented in Matlab. According to experimental results, the 

new proposal gives two or three correct decimals more than FDM. 
The problem can be solved by economic effort for a considerably 
large interval of time, and the extra elapsed time compared to 
FDM, is fully justified by the accuracy provided. 
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