
 International Journal of Innovative Research in Engineering & Management (IJIREM)

 ISSN: 2350-0557, Volume-6, Issue-2, March 2019

Copyright © 2019. Innovative Research Publications. All Rights Reserved 3

Detection of False Data Injection Attacks and Genetic

Algorithm Based Dynamic Jobs Scheduling in Grid

Computing

 Shruti B Patel

 Computer Science Engineering,
 VIT Vellore Institute of Technology,

 Vellore, India,

 shrutibpatel50@gmail.com

 Prof. Manikandan K

 Computer Science Engineering,
 VIT Vellore Institute of Technology,

 Vellore, India,

 kmanikandan@vit.ac.in

ABSTRACT

A computational grid is a large scale, heterogeneous collection of
autonomous systems, geographically distributed and
interconnected by low latency and high bandwidth networks. The
sharing of computational resources is a major aspect of grids.
Scheduling is a key problem in emergent computational systems,
such as Grid and P2P, in order to benefit from the large
computing capacity of such systems. Our approach is to
dynamically generate an optimal schedule to complete the

different tasks in a minimum period of time as well as utilizing the
resources in an efficient way. There are so many approaches for
scheduling like Genetic Algorithm (GA), Simulated Annealing
(SA) and Ant Colony optimization (ACO). In this paper, we
would like to present Genetic Algorithms (GAs) based schedulers
for efficiently allocating jobs to resources in a Grid system. We
would also like to implement GAs for designing efficient Grid
schedulers when makespan is minimized. Our GA-based

schedulers are very fast and hence they can be used schedule jobs
arrived in the Grid system. Adding to this, increased connectivity
of grid helps for bidirectional communications presents extreme
security vulnerabilities. The proposed system also provides
approach for false data detection in smart grids, like MD5
message-digest algorithm used as cryptographic hash function for
message authentication and to verify the content of the message.

Keywords:

False data detection, Genetic Algorithm, Makespan, Minimum
completion time, Fitness.

1. INTRODUCTION

Grid computing has emerged as an important field, distinguished
from conventional distributed computing by its focus on large-
scale resource sharing, innovative applications and high-

performance orientation. In grid, computing scheduling is
challenging job. Therefore, we used GAs for designing efficient
Grid schedulers when makespan is minimized. The GA
operation is based on the Darwinian principle of “survival of the
fittest”. It implies that the fitter individuals are more likely to
survive and have a greater chance of passing their good genetic
features to the next generation. In genetic algorithm, each
individual that is a member of the population represents a

Potential solution to the problem. GA starts with initial population
of individuals (chromosomes).In [9] each individual is evaluated
using fitness function to produce a value known as goodness of
the solution. In [3], then a new population is generated by

selecting best individuals from the current population and
applying crossover operator to produce new offspring, which
would inherit good features of parents. Then each offspring is
mutated in order to prevent GA to be trapped in local optima. Best
individuals among current population and new population are
carried forwarded in the next generation. The process is repeated
until stopping condition met and best solution in the current
generation is returned. We have used Genetic Algorithm based

approach for our paper because GA can search for optimal/nearly
optimal solution for scheduling quickly. It is well understood and
applicable to many real life problems. In [9] GA can easily be
combined with other meta-heuristic approaches for multiple
objectives.

2. PROPOSED SYSTEM DESIGN

I used genetic algorithm to find optimal/nearly optimal schedule

when makespan is minimum which efficiently utilize the

resources. Proposed GA can quickly search solution space in

parallel to find optimal/nearly optimal solution in very less time.

It uses dynamic information received from Grid Information

System to determine optimal/ nearly optimal solution. It can work

with larger sized problems. We are going to present a job-

scheduling algorithm, which can perform well and adding to this,

We present a security framework, which can detect various

attacks including random attacks, denial-of-communication

attacks, replay attacks, and false data injection attacks in the smart

grid.

3. PROBLEM FORMULATION

Our GA is based on Expected Time to Compute (ETC) Model. An
ETC for any job j on any resource (machine) r is expected
execution time of job j on r if j is scheduled on r. The problem for
grid scheduling consists of following:

 n – the number of jobs to be schedule at particular instance of

time. Any job has to be processed entirely in unique
resource.

 Detection of False Data Injection Attacks and Genetic Algorithm Based Dynamic Jobs Scheduling in Grid Computing

Copyright © 2019. Innovative Research Publications. All Rights Reserved 4

 m – the number of heterogeneous resources(machines)
available in the Grid for an execution of a given set of jobs

 N = {j1, . . . ,jn} a set of n jobs

 R = {r1, . . . ,rm} set of available m resources.

 The workload Wi of each job i.

 The computing capacity CCr of each resource (in millions of

instruction per second) r.

 The expected time to compute ETC matrix of size

n×m(number of jobs * number of resources).ETC[j][r]
indicates the expected execution time of job j in resource r.

I considered the scenario in which jobs submitted to the Grid are
independent and are not preemptive.

A. Fitness of a Schedule: We used uni-criteria optimization case
for computing optimal/nearly optimal schedule of a set of jobs on

a set of heterogeneous resources as per [5]. The fundamental
criterion is that of minimizing the makespan.

B. Makespan: The time when latest job finishes. It is calculated
as follows:

In eq.(1) Fj denotes time when job j finalizes, Schedules denotes

the set of all possible schedules and N denotes the set of all jobs to
be scheduled. The goal of scheduler is to maximize resource
utilization and minimize makespan. Completion time of machine i
is denoted by completion[r] and it is expressed as a total time
needed for the resource r to finalizing its previously assigned jobs
and jobs which are actually scheduled to this resource. We can
compute ETC and completion time completion[r] for resource r as
follows:

Where,
ETC[r] [j] =expected time to compute job j on resource r.

Wj = workload of job j
CCr = computing capacity of resource r.

Completion[r] =completion time for resource r.
Readyr=time when resource r finishes previously assigned

jobs to it.

The makespan of eq. (1) can be redefined as the maximal
completion time and can be calculated as follows: A criteria
makespan can be integrated in several ways to establish the
desired priority among them. In the multi-objective optimization,
two fundamental models are the hierarchical and the simultaneous

approach. In hierarchical approach, the optimization criteria are
sorted by their importance. The process starts by optimizing most
important criterion. When further improvements are not possible,

the second criterion is optimized while keeping optimized value
of first important criterion unchanged. In grid scheduling,
makespan may be considered as most important criterion. We
used simultaneous approach to compute objective function or
fitness function.

 Fitness = 1 / makespan … … … … … … … …(5)

4. OVERALL SYSTEM ARCHITECTURE

We implemented GA based grid scheduler that maximizes

resource utilization by minimizing makespan. It also determines
schedules based on the current resource information (dynamic and
static information). Hence can easily react to dynamism involved
in grid environment. For same overall system, architecture is
shown in figure.1.
We designed our system in 3 major modules.

4.1 Monitoring & Discovery Service (MDS)

Module:

This module is used to discover the new grid resources and to
monitor already discovered resources. When MDS process starts

first time it reads /var/grid resources file to get list of the resources
available initially. It also creates a thread to periodically poll
already discovered grid resources to get current information about
each of these grid resources. The information includes static
information about resources such as processor
family/architecture, number of CPUs/resource, CPU frequency,
total RAM, total swap area etc., and dynamic information such as
resource computing status busy/free, resource up/down status, free

RAM, load, number of free CPUs etc. It also periodically receives
resource information from grid resources. This information is sent
to manager process as well as GA based grid scheduler as and
when needed. GA scheduler uses current resource information to
compute optimal/nearly optimal solution to assign jobs to
resources. It also receives update information from manager
process and updates its data

4.2 Manager Module:

This module is the central part of our implementation. It receives
commands from users. It implements following functions.

 Command processing & Scheduler invocation

 Job queue management

 Job management

 Job monitoring

The Manager receives command requests (such as submit a job,

query jobs, delete a job) from users as shown in figure 1. When a
user submits a job using gsub command, it sends job submission
request to manager. When manager receives a job submission
request, unique job id is generated for a job and its description is
appended to job queue. If a command request is to query
jobs(gstat), it simply loop through job queue and send information

such as job id, job status, job name, job executable, assigned
resource if it is already scheduled etc. If command is to delete a
job (gdel) and job is scheduled then job management components
forward request to gatekeeper of the assigned host to clean the
job. Once the job is deleted on the resource, it will be removed
from the job queue otherwise an error is reported. This component
periodically checks if there are unscheduled jobs in the job queue.
If there are some jobs, it connects to GA Grid scheduler, send

 International Journal of Innovative Research in Engineering & Management (IJIREM)

 ISSN: 2350-0557, Volume-6, Issue-2, March 2019

Copyright © 2019. Innovative Research Publications. All Rights Reserved 5

information about jobs to GA grid scheduler and wait for
optimal/nearly optimal mapping of jobs to suitable resources from
the scheduler. Once it receives, a optimal/nearly optimal schedule
from scheduler, for each (job, resource) pair in the schedule, it
submits to local resource manager for execution purpose.

4.3 Scheduler Module

This module uses Genetic Algorithm to find optimal/nearly
optimal solution by minimizing makespan. It receives information
about list of jobs from manager and information about available
resources from MDS server. It then creates initial population of k
schedules using Minimum Completion Time heuristics. It then
evaluates the current population by computing fitness function for
each of k. It then creates a new population by repeating selection,
crossover, and mutation and assignment steps until the size of new
population becomes k. It then evaluates the new population and

carries forward best schedules of the current population as well as
the new population in the next generation in order to get
optimal/nearly optimal solution quickly. The algorithm evolves
generation by generation until termination criteria met. The
Scheduler then return best schedules in current population. This
schedule will then be sent to manager. Manager submits this job
description to the assigned resource.

5. SYSTEM DESIGN

This section presents actual design of our system which is Job
scheduler using Genetic Algorithm in grid computing. In [9]
Dynamic task scheduling using Genetic Algorithm in a
computational grid, resources are shared by many users, who
submit their applications concurrently. We implemented Genetic
Algorithm based Grid scheduling using following steps.

5.1 Schedule Encoding
We used direct representation to encode each possible schedule in
a chromosome. We used array chromosome of n(number of jobs)
integer to represent a chromosome(a schedule) as shown in fig. 2.
Chromosome[j] represents the resource number where job j is

scheduled.

Figure. 1: Encoding of a schedule (a chromosome)

5.2 Generation of Initial population
In [7], initial population is usually generated randomly. But to

guide the searching process and to get optimal/nearly optimal
solution in fewer generations, several problem specific heuristics
may be used such as Min-Min, Minimum Completion Time
(MCT) etc. We used MCT heuristics to guide a searching process
for finding optimal/nearly optimal schedule quickly in fewer
generations. In the MCT heuristic, each job is assigned to the
resource where job completes in minimum time. Jobs are
considered for allocation at random.

5.3 Compute Fitness function
The scheduler aims to maximize resource utilization by

minimizing makespan. Good chromosomes have higher fitness
values. The fitness of each chromosome (schedule) is computed
using eq. (5).

5.4 Selection operator
Selection operator is used to select parents to which crossover
operator is applied to produce new offspring. In general, selection
is directly proportional to the fitness of chromosomes. Several
selection methods exist to select chromosomes for crossover such
as linear ranking, roulette wheel selection etc. We used roulette
wheel selection technique to select good schedules to produce
new offspring. In roulette wheel selection method, the probability
that a chromosome selected is directly proportional to its fitness

value. Higher the fitness, higher chances the chromosome will be
selected. In this method, each schedule or chromosome gets
portion on the roulette wheel according to its fitness value.
Chromosomes with higher fitness value get larger slice on roulette
wheel. Selection is done by spinning a roulette wheel. Since fittest
schedule has larger portion on the roulette wheel, they will have
higher chance of being selected. Circumference of roulette wheel
represents the total fitness of all chromosomes. Pseudo code for

roulette wheel selection method is shown below. The roulette
wheel selection of among 4 chromosomes is shown in figure 2.
Chromosome 3 has higher chance of getting selected as shown in
figure. 2.

Pseudo code Roulette Wheel Selection
RouletteWheelSelection()

{

total_fitness=0.0; running_sum=0.0;

for each chromosome k in a current population

 total_fitness=fitness(k);

r=select random number r in the range
[0,total_fitness-1]. for each chromosome k in a current
population

 running_sum=running_sum+fitness(k);

 if(running_sum >= r)

 return(k);

}

Figure 2: Chromosome selection as per roulette Wheel

5.5 Crossover operator
With crossover operator, two selected parent chromosomes can

interchange their genes and produce new offspring (children). The

aim is to obtain better quality solution and explore a new region of

33%

15%

47%

5%

chromosome selection

chromosome1

chromosome2

chromosome3

chromosome4

 Detection of False Data Injection Attacks and Genetic Algorithm Based Dynamic Jobs Scheduling in Grid Computing

Copyright © 2019. Innovative Research Publications. All Rights Reserved 6

solution space that has not been yet explored. One may use

several different types of crossover such as one-point crossover,

two-point crossover, uniform crossover etc. In [10], one-point

crossover operator to produce offspring schedules. In this method,

first, random crossover point between 1 and n (number of jobs) is

selected, and then first parts of two parents are interchanged to

produce two offspring (schedules). Same way, exchanging second

parts of two parents to produce two new offspring (schedules)

which are same as those produced by exchanging first parts. One

point crossover

Figure. 3 one point crossover operator

5.6 Mutation operator
Mutation randomly changes gene(s) to different values. It is used
to provide diversification by changing some gene(s) randomly and
thereby prevent GA search process getting stuck in to local

optima. There are several types of mutation such as move, swap
etc., applied to a schedule. We used move mutation which
randomly selects a job in a schedule (a chromosome) and assign it
to another machine as shown in fig 4.

Figure. 4 Mutation operation

5.7 Replacement operator
Replacement operator determines which of the chromosomes

(schedules) survives in the next generation. Two kinds of

replacement usually used to carry forwards chromosomes to next

generation (a) Generational replacement (b) Partial replacement.

In a generational replacement, the current population is entirely

replaced by new population while in partial replacement worst

chromosomes in a current population are replaced by good

chromosomes of new population. We used partial replacement

strategy in which k best chromosomes from combined current and

new population are carried forward to the next generation. First,

fitness function is computed for each offspring. Let CP(t) be the

current population in generation t and NP(t) be new population in

generation t, then current population of next generation t+1 will

be

CP(t+1)=k best schedules from (CP(t) U NP(t))

5.8 Termination Criteria
Termination criteria could be

(i) Maximum number of generations or iterations: the genetic

search process is terminated after fixed number of generation

[2].

(ii) Number of iterations without improvement: the optimization

process is terminated after some fixed number of iterations

without any improvement [2].

 We used (i) termination criterion for our genetic algorithm

based grid scheduler in which search process terminates after

300 generations. If termination criterion is not satisfied goto,

step 3 and repeat the process. In general, this genetic search

process of finding optimal/nearly optimal solution can be

summarized as follows:

GAGridScheduling () {
1. ENCODING: Represent a schedule(a chromosome) using

array of n(number of jobs) integer chromosome such that

chromosome[i] represents the resource on which job is

scheduled

2. INITIALIZATION: Generate a initial population CP(t=0) of

k schedules using

 MCT (Minimum Completion Time) heuristic.

3. FITNESS: Evaluate schedule in CP(t) using eq. (5)

4. TERMINATION CRITERIA: Check if termination criteria
satisfied, if ‘yes’ return the best solution from current
population CP (t).

5. NEW POPULATION: Repeat following steps until size of
new population NP (t) becomes k.

(a) Selection: Select two parents schedules p1 & p2 from CP
(t) using roulette wheel method.

(b) Crossover: With crossover probability pc Perform one-
point crossover to produce two new offspring schedules o1
& o2.

(c) Mutation: With very low mutation probability pm, change
the assignment of randomly chosen job to new grid

resources in each offspring o1 and o2.

(d) Assignment: Place o1 & o2 in NP(t)

NP(t)=NP(t) U{ o1,o2}
6. FITNESS: Evaluate schedule in NP (t) using eq.(5).

7. REPLACEMENT:

(a) Select k best schedules from CP(t) and NP(t) to carry
forward in the next generation. CP(t+1)=k best
schedules from (CP(t) U NP(t))

 International Journal of Innovative Research in Engineering & Management (IJIREM)

 ISSN: 2350-0557, Volume-6, Issue-2, March 2019

Copyright © 2019. Innovative Research Publications. All Rights Reserved 7

(b) Increment generation count

 t=t+1
Goto Step 4

}

6. RESULTS AND ANALYSIS

For the experimental purpose, consider following problem
instance consisting of 10 grid resources and 20 jobs. List of grid

resources with existing workload is shown in the Table-1.

Table-1: List of grid resources with corresponding
computing capacity

Table-2: List of jobs with corresponding workload

To find out optimal/nearly optimal solution for this problem
instance, we tuned our genetic algorithm based scheduler with
following parameters

Number of Generations=300
Size of population=256
Crossover probability (Pc) =0.90
Mutation probability (Pm) =0.0001

We got makespan=26.0183 in generation number 189 and then it
retains this value until last generation. So if we reduce number of
generations to less than 189, we got makespan=26.6066.

7. CONCLUSION

We presented an extensive study on the usefulness of Genetic

Algorithms (GAs) for designing efficient Grid schedulers when

makespan parameter is minimized under hierarchic and

simultaneous approaches. The experimental study reveals the

quality of the proposed GA-based schedulers as compared well to

the existing GA-schedulers in the literature. Our GA-based

schedulers can be used to design dynamic schedulers. A dynamic

scheduler would run our GA in batch mode to schedule jobs

arrived in the system since last activation of the scheduler.

REFERENCES

[1] Abraham, A. H. Liu, W. Zhang and T. G. Chang, Job
scheduling on computational grids using fuzzy particle
swarm algorithm, Proc. of the 10th International Conference
on Knowledge-Based and Intelligent Information and
Engineering Systems, B. Gabrys et al. (eds.): Part II, Lecture

Notes on Artificial Intelligence 4252, 500507, Springer,
2006.

[2] Abramson, D., R. Buyya and J. Giddy, A computational
economy for grid computing and its implementation in the
Nimrod-G resource broker, Future Generation Computer
Systems Journal, vol.18,no.8, pp.1061-1074, 2016.

[3] Alba, E., F. Almeida, M. Blesa, C. Cotta, M. Daz, I. Dorta, J.
Gabarr, C. Le, G. Luque, J. Petit,C. Rodrguez, A. Rojas and

F. Xhafa, Efficient parallel LAN/WAN algorithms for
optimization, Parallel Computing, vol.32, no.5-6, pp.415-
440, 2006.

[4] Buyya, R., Economic-based Distributed Resource
Management and Scheduling for Grid Computing, Ph. D.
Thesis, Monash University, Melbourne, Australia, 2017.

[5] Buyya, R., D. Abramson and J. Giddy, Nimrod/G: An
architecture for a resource management and scheduling

system in a global computational grid, Proc. of the 4th
International Conference on High Performance Computing,
Asia-Pacific Region, China, 2015.

[6] Javier Carretero, Fatos Xhafa, Ajith Abraham. Genetic
algorithm based schedulers for grid computing systems. In
International Journal of Innovative Computing, Information
and Control ICIC International °c 2005 ISSN 1349-4198
Volume 3, Number 6, December 2017.

[7] A. Abraham, R. Buyya, and B. Nath. Nature’s heuristics for

scheduling jobs on computational grids. In The 8th IEEE

 Detection of False Data Injection Attacks and Genetic Algorithm Based Dynamic Jobs Scheduling in Grid Computing

Copyright © 2019. Innovative Research Publications. All Rights Reserved 8

International Conference on Advanced Computing and
Communications, India, 2016.

[8] Jia Yu and Rajkumar Buyya. Workflow Schdeduling
Algorithms for Grid Computing Grid Computing and
Distributed Systems (GRIDS) Laboratory Department of
Computer Science and Software Engineering The University
of Melbourne, Australia.

[9] Guangchang Ye, Ruonan Rao, Minglu Li. A Multiobjective

Resources Scheduling Approach Based on Genetic
Algorithms in Grid Environment. In Fifth International
Conference on Grid and Cooperative Computing Workshops
(GCCW'06) IEEE computer society.

[10] Taras S. Shapovalov, Alexey G. Tarasov. Genetic Algorithm
Based Parallel Jobs Scheduling. In program “Research and

scientific-pedagogical personnel of innovative
Russia”(project No. 02-740-11-0626) and Grant of Russian
Foundation for Basic Research and Far eastern branch of
Russian academy of sciences No. 10-III-B- 01I-009.

[11] Wei Sun , Yuanyuan Zhang , Yanwei Wu, and Yasushi
Inoguchi Practical Task Flow Scheduling for High
Throughput Computational Grid. In International Conference
on Parallel Processing Workshops (ICPPW'06) 0-7695-2637-

3/06 $20.00 © 2006 IEEE computer society.

[12] T. Casavant, and J. Kuhl, A Taxonomy of Scheduling in
General-purpose Distributed Computing Systems, in IEEE
Trans. on Software Engineering Vol. 14, No.2, pp. 141--154,
February 2016.

