
International Journal of Innovative Research in Engineering & Management (IJIREM) 

ISSN: 2350-0557, Volume-5, Issue-6, November-2018 

 
 

Copyright © 2018. Innovative Research Publications. All Rights Reserved 173 

 

Recognition of Some Modulated Apertures Using the Cascaded 

Fabry- Perot Interferometer(CFPI) 

A.M. Hamed 

Physics Department, Faculty of Science,  

Ain Shams University, 11566 Cairo, Egypt. 

e- mail : amhamed73@hotmail.com 

 

ABSTRACT 
In this paper, five modulated apertures are considered. The first 

has linear distribution, the second has conic shape, the third has 

quadratic distribution, the fourth  has Gaussian distribution, and 

the fifth has B/W concentric annuli. These apertures are 

recognized from the fringe shift occurred in the interferometric 

images using the CFPI. The recognized modulated apertures are 

compared with the fringe shift corresponding to the uniform 

circular aperture. The improved multiple beam Interferometer or 

the CFPI working in transmission is considered for the aperture 

recognition. The sharp  interferometric images obtained from the 

CFPI provided with the apertures are constructed using Mat- 
Lab code. 

Keywords: aperture recognition,modulated apertures, 

cascaded Fabry Perot interferometer- improvement of 

interferometric images. 

 

1. INTRODUCTION 

Early, digital speckle pattern interferometric system to monitor 

surface vibrations and out of plane tilt is presented [1], where 

the resolution of the system used to measure the out of plane 

displacement is 1/2 per fringe. The application of a general-

purpose image-processing computer system to automatic fringe 

analysis is presented. The applications considered are strain 

measurement by speckle interferometry, position location in 

three axes, and fault detection in holographic nondestructive 

testing [2]. Recently, image processing of apertures using 

speckle photography and holography was studied by many 

authors [3- 7].  While interferometric microsopic and other 

images are investigated in [8, 15]. In a recent publication by the 

author [16], multiple pass of two beam interference is 

considered, while in this study we consider CFPI for the 

formation of sharp fringes. In this paper, aperture recognition 

using Cascaded Fabry Perot Interferometer (CFPI) is proposed. 

We can recognize shape of apertures from the fringe shift. The 

design of modulated apertures like linear, quadratic, B/W 

concentric annuli, and Gaussian distributions is made using the 

Mat- Lab code. Results and discussion is given followed by a 

conclusion.Early, digital speckle pattern interferometric system 

to monitor surface vibrations and out of plane tilt is presented 

[1], where the resolution of the system used to measure the out 

of plane displacement is 1/2 per fringe. The application of a 

general-purpose image-processing computer system to 

automatic fringe analysis is presented. The applications 

considered are strain measurement by speckle interferometry, 

position location in three axes, and fault detection in holographic 

nondestructive testing [2]. Recently, image processing of 

apertures using speckle photography and holography was 

studied by many authors [3- 7].  While interferometric 

microsopic and other images are investigated in [8, 15]. In a 

recent publication by the author [16], multiple pass of two beam 

interference is considered, while in this study we consider CFPI 

for the formation of sharp fringes. In this paper, aperture 

recognition using Cascaded Fabry Perot Interferometer (CFPI) is 

proposed. We can recognize shape of apertures from the fringe 

shift. The design of modulated apertures like linear, quadratic, 

B/W concentric annuli, and Gaussian distributions is made using 

the Mat- Lab code. Results and discussion is given followed by 

a conclusion. 

 

2. THEORETICAL ANALYSIS 

A higher order multiple beam interference composed of four 

cascaded interferometers is schematically represented as in the 

figure (1). A He- Ne laser beam is spatially filtered and 

rendering parallel using an objective lens L followed by a 

pinhole P placed in the short focus of the objective lens, and 

converging lens L1 placed at the focal plane f from the pinhole. 

The collimated laser beam passes through the four F.P.I. 

arranged in series followed by the Fourier transform lens L2 of 

focal length f2, The Fourier and imaging planes are located as 

shown in the figure (1). 

The intensity distribution in case of ordinary FPI is given by this 

formula [11]: 

𝐼( ; 𝑅) =  
𝑇4

1+ 𝑅4−2𝑅2cos ⁡()
                                           (1) 

Where T is the transmission coefficient while R is the reflection 

coefficient of the interferometer.  , is the phase difference 

between any two adjacent emerging rays.  

While in case of cascaded interferometers, the intensity 

distribution is the ordinary distribution to the power of N, where 

N is the number of cascaded interferometers. Then, the intensity 

distribution in Cascaded Fabry- Perot Interferometer (CFPI) is 

represented as follows: 
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Figure (1): Multiple beam interferometer composed of four cascaded interferometers. L objective lens, P pinhole, and L1 

converging lens where the elements L, P, and L1 render the laser beam spatially filtered and collimated. L2 is the Fourier 

transform lens of focal length f2, The Fourier and imaging planes are shown in the figure. 

 

𝐼( ; 𝑅, 𝑁 ) = [
𝑇4

1+ 𝑅4−2𝑅2 cos   
]   (2) 

The maximum intensity is computed as: 

𝐼  = 2 ; 𝑅, 𝑁  = 𝐼𝑚𝑎𝑥  𝑅, 𝑁 

= [
𝑇4

(1 − 𝑅2)2]𝑁                         (3) 

Making use of equations (2, 3), the normalized intensity due to 

the cascaded multiple beam interference can be written as 

follows: 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑   ;𝑅, 𝑁  =  
𝐼

𝐼𝑚𝑎𝑥
=  

1

[1 + 𝐹 𝑠𝑖𝑛2(


2
)]𝑁

           (4) 

Where 𝐹 =  
4𝑅2

(1−𝑅2)2
   is the coefficient of finesse.                                                                   

(5) 

F defined as the coefficient of finesse is a measure of fringe 

sharpness and contrast. 

For greater values of reflectivity, R > 80%, F is much larger 

than one, hence, approximate expression for the intensity is 

obtained as: 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑   ; 𝑅, 𝑁    1/[𝐹 𝑠𝑖𝑛2  


2
 ]𝑁                             (6) 

 

The five modulated apertures used in the CFPI described above 
are represented as follows: 

𝑃  =            ; 



0

 1      ;       for linear aperture           (7) 

𝑃  =  1 −      ; 



0

   ;      for conic aperture                    (8) 

𝑃  =   2          ; 


0

 1       ;    for quadratic aperture      (9) 

𝑃  

=  exp⁡[−     


0

)2    ; 


0

 1   ;   for Gaussian aperture  (10) 

𝑃  

=   [ 𝑃2𝑖

𝑁

𝑖=1

  

−  𝑃𝑖   ]  ;  


0

 1   for  black and white concentric annuli  (11) 

Assume that the apertures described in equations (6- 11) are 

considered as images represented in matrix form and introduced 

inside the CFPI, where P () = (x, y) = (m x, n y). The 

image matrix has dimensions of M × N. Where m = 1: 512 and 

n= 1: 512 pixels. Then, the fringe shift present in the image is 

located in the harmonic term in the Airy distribution. Hence, 

equation (2), is rewritten as follows: 

𝐼( ; 𝑅, 𝑁 ) = [
𝑇4

1+ 𝑅4−2𝑅2 cos [ +  x,y ]
]𝑁(12) 

Or using equation (4), we write normalized intensity considering 

the deformed phase as follows: 

 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑   ;𝑅, 𝑁  =  
𝐼

𝐼𝑚𝑎𝑥

=  
1

[1 + 𝐹 𝑠𝑖𝑛2(
 +  x,y 

2
)]𝑁

                                                 (13) 

Now we compute the phase mapping of the image from equation 

(12) as follows: 

The deformed or shifted phase is the sum of the inter-fringe 

spacing and the image phase represented as follows: 

(x, y)𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 =   +   x, y                               (14) 

Consequently, the phase of the image iseasily deduced from 

equation (13) as follows: 

 x, y  =      (x, y)𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 −                                     (15) 

Where the inter-fringe spacing is given by:  

 =
2


 𝑂. 𝑃. 𝐷.  =  

2


 


2
 =  .(16)         

Compared with the known method of fringe shift obtained at 0, 

/2, , 3/2 for successive intensities I1 , I2 ,  I3, and I4 ,giving 

this result: 

 𝑥, 𝑦 =  𝑡𝑎𝑛−1  
𝐼2−𝐼1
𝐼4 − 𝐼3

 (17) 

3. RESULTS AND DISCUSSION 

The coefficient of finesse F as a function of reflectivity R for 

different cascaded interferometers is computed from equation 

(14) and represented as shown in the figure (2).  N=1 stands for 

the ordinary FPI while N= 2, 3, and 4 stands for the number of 

cascaded interferometers.  
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Figure (2):  Coefficient of finesse F as a function of 

reflectivity R for different cascaded interferometers. N=1 

stands for the ordinary FPI while N= 2, 3, and 4 stands for 

the number of cascaded interferometers. 

 

The design of the investigated linear, conic, quadratic, and 

Gaussian apertures is fabricated using Mat- Lab code. The 

Linearly distributed aperture of diameter 256 pixels and the 

matrix dimensions of the whole image 512 × 512 pixels is 

shown in the figure (3). For the 1st model of linear aperture, it is 

shown, as in the figure (4- a), that the fringe shift due to the 

aperture has linear shape which recognizes it. Seven fringes are 

shown for the whole image while only four shifted fringes 

appeared inside the aperture. In the figure (4- b), fourteen 

fringes are shown in the whole image while seven shifted fringes 

appeared inside the aperture.   

 

Figure (3): Linearly distributed aperture of diameter 256 

pixels and the matrix dimensions of the whole image is 512 × 

512 pixels. 

 

Figure (4- a): The fringe shift has linear shape to identify the 

linear aperture. Seven fringes are shown for the whole image 

while only four fringes appeared inside the aperture. 

 

Figure (4- b):  Fourteen fringes are shown in the whole 

image while seven shifted fringes appeared inside the 

aperture.  

In one dimension, the fringe shift corresponding to the linear 

aperture is shown in the figure (5- a). The fringes give the phase 
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of the image at different locations where the 2nd fringe, from the 

right, gives zero shift. Seven fringes are shown in the plot while 

only four shifted fringes appeared inside the aperture. It is 

shown, for the linear aperture, that the fringe shift equals the 

inter-fringe spacing (Z= Z).  In the figure (5- b), the 3rd 

fringe has zero shift compared with the other straight line fringes 

giving the phase of the image at different locations. Fourteen 

fringes are shown in the plot while only eight shifted fringes 

appeared inside the aperture. For the 2nd model, namely conic 

aperture where P () = 1-  , it is shown that the fringe shift 

has conic shape as shown in the figure (6). The shift appears in 

the reverse direction corresponding to the linear aperture. The 

aperture has diameter =256 pixels and the matrix dimensions of 

the whole image is 512 × 512 pixels. Seven fringes are shown 

for the whole image while only four shifted fringes to the right 

are appeared. The fringe shift in one dimension has conic shape 

is shown in the figure (7).The shift appears in the reverse 

direction corresponding to the linear aperture. The aperture has 

diameter =256 pixels and the matrix dimensions of the whole 

image is 512 × 512 pixels. Four shifted fringes are shown inside 

the conic aperture. The mat- Lab code for the conic aperture is 

written as follows: The Mat- Lab code for the mono-

dimensional conic aperture is written as follows:  

A (r, c) = 1- ((r- xcen) ^ 2) ^0.5  

 

Figure (5-a): The fringe shift corresponding to the linear 

aperture in one dimension. The fringes give the phase of the 

image at different locations while the 2nd fringe give zero 

shift. Seven fringes are shown in the plot while only four 

fringes appeared inside the aperture. It is shown, for the 

linear aperture, that the fringe shift equals the inter-fringe 

spacing (Z= Z). 

 

Figure (5- b): The fringe shift in one dimension is shown in 

the graph. The 3rd fringe has zero shift compared with the 

other straight line fringes giving the phase of the image at 

different locations. Fourteen fringes are shown in the plot 

while only eight fringes appeared inside the aperture. 

 

Figure (6): The fringe shift has conic shape. The shift 

appears in the reverse direction corresponding to the linear 

aperture. The aperture has diameter =256 pixels and the 

matrix dimensions of the whole image is 512 × 512 pixels. 

Seven fringes are shown. 
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Figure (7): The fringe shift in one dimension has conic 

shape.The shift appears in the reverse direction 

corresponding to the linear aperture. The aperture has 

diameter =256 pixels and the matrix dimensions of the whole 

image is 512 × 512 pixels. Four fringes are shown inside the 

conic aperture. 

 

An aperture in the form P () = 1.1 is shown as in the figure 

(8- a). This aperture is deviated from linearity by 10%. The 

corresponding fringe shift is not linear, hence any deviation 

from linearity give quadratic fringe shift as shown in the figure 

(8- b). The Mat- Lab code for the aperture deviated from linear 

distribution by 10% is: 

A(r,c)= ( sqrt ((r-xcen )^2 + (c-ycen)^2))^1.1 ; 

 

Figure (8- a): An aperture in the form P 1.1 is 

shown is shown in the graph 

Figure (8- b): The quadratic fringe shift corresponding to an 

aperture in the form P  = 1.1 The Mat- Lab code 

for the aperture is: 

 A(r,c)= ( sqrt ((r-xcen )^2 + (c-ycen)^2))^1.1 ; 

 

The investigation of the fringe shift for this aperture in one 

dimension is outlined as in the figure (9 a- c).The fringe shift in 

case of one direction for nearly linear aperture is shown as in the 

figure (9- a) where the cursor stands at the point x1 = 272 pixels 

for the 4th fringe from the right. In the figure (9- b), the cursor 

stands at the point x1 = 204 pixels for the 5th fringe from the 

right. Hence, the inter-fringe spacing is deduced as: Z= 272- 

204 = 68 pixels. Figure (9- c) represents the fringe shift in case 

of one direction for nearly linear aperture and the cursor stands 

at the point x1 = 197 pixels for the shifted fringe. The amount of 

fringe shift for this deviated aperture from linearity is: Zd = 

275- 197 = 68 pixels. The differential fringe shift is:  

(Zd - Z)/Z =(75-68)/68 = 0.102. 

 
 

Figure (9- a): The fringe shift in case one direction for nearly 

linear aperture and the cursor stands at the point x1 = 272 

pixels for the 4th fringe from the right.  
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Figure (9- b): The fringe shift in case one direction for 

nearly linear aperture and the cursor stands at the point x1 

= 204 pixels for the 5th fringe from the right. The inter-

fringe spacing is deduced from figure (7 a, b) as: Z= 272- 

204 = 68 pixels. 

 
Figure (9- c): The fringe shift in case of one direction for 

nearly linear aperture and the cursor stands at the point x1 

= 197 pixels for the shifted fringe. The amount of fringe shift 

for this deviated aperture from linearity is: Zd = 275- 197 = 

68 pixels. The differential fringe shift is:  

(Z - Z)/Z =(75-68)/68 = 0.102. This differential fringe 

shift is related to the deviated aperture from linearity. 

 

For the 3rd model, Quadratic aperture of diameter 256 pixels. is 

shown as in the figure (10- a). Interference fringes modulated by 

mono-dimensional quadratic aperture of diameter 256 pixels is 

shown as in the figure (10- b). Mat- Lab code of the aperture is 

represented as follows: A(i, j)= ((i- xcen )^2)/256 ;where i= 

1:512, j= 1: 512 pixels, andxcen = 256 pixels. Another 

interference fringes modulated by mono-dimensional quadratic 

aperture of diameter 256 pixels of different amplification is 

shown as in the figure (10- c). The corresponding Mat- Lab code 

of the aperture is: 

A(i, j)= ((i- xcen )^2)/1024 ;where i, j, and xcen are as in figure 

(10- b). 

 

 
Figure (10- a): Quadratic aperture of diameter 256 pixels. 

 
Figure (10- b): Interference fringes modulated by mono-

dimensional quadratic aperture of diameter 256 pixels.  

The Mat- Lab code of the aperture is: A(i, j)= ((i- xcen 

)^2)/256 ;where i= 1:512, j= 1: 512 pixels. xcen = 256 pixels. 

 

 

 
Figure (10- c): Interference fringes modulated by mono-

dimensional quadratic aperture of diameter 256 pixels.  
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The Mat- Lab code of the aperture is: A(i, j)= ((i- xcen 

)^2)/1024 ;where i= 1:512, j= 1: 512 pixels. xcen = 256 pixels. 

 

The 4th model of Gaussian aperture of truncation radius R= 64 

pixels. is shown as in the figure (11- a). The Mat- Lab code for 

the Gaussian aperture is written as follows: 

  A(i, j)=  G* exp (-((i- xcen)^2 + (j- ycen)^2)/R^2); G = 4 

 The fringe shift corresponding to the Gaussian 

aperture inside a circle of diameter 256 pixels is shown as in the 

figure (11- b). Where the aperture has radius R= 64 pixels and 

G= 4. The fringe shift for the Gaussian aperture for G = 8, is 

shown in the figure (11- c).Another plot of the fringe shift inside 

a circle of diameter 512 pixels for the Gaussian aperture of 

radius R= 128 pixels is shown as in the figure (11- d). It is 

shown from all the plots shown in the figure (11 b- c) that the 

distribution is Gaussian. 

 

 
Figure (11- a): Gaussian aperture of truncation radius R= 64 

pixels. 

 The Mat- Lab code for the Gaussian aperture 

A(i, j)= (4)* exp (-((i- xcen)^2 + (j- ycen)^2)/R^2); 

 

  
Figure (11- b): The fringe shift corresponding to the 

Gaussian aperture inside a circle of diameter 256 pixels. The 

aperture radius R= 64 pixels. 

A(i,j)=  G* exp (-((i- xcen)^2 + (j- ycen)^2)/R^2); G = 4 

 

The Mat- Lab code for the fringe shift corresponding to the 

Gaussian aperture is: F1 = 4*r1^2*(sin (0.5*y – A (i, j))^2); 

 
Figure (11- c): A(i,j)=  G* exp (-((i- xcen)^2 + (j- 

ycen)^2)/R^2); G = 8 

 
Figure (11- d): The fringe shift inside a circle of diameter 

512 pixels for the Gaussian aperture of radius R= 128 pixels.  

 

The B/W concentric annuli are shown as in the figure (12- a). It 

has four equal transparent annuli in succession with four equal 

black annuli. The fringe shift corresponding to B/W concentric 

annuli has shifted discontinuous straight line fringes as shown in 

the figure (12- b).  
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Figure (12- a): The aperture of B/W concentric annuli. It has 

four equal transparent annuli in succession with four equal 

black annuli. 

 

 

 
 

Figure (12- b): The fringe shift corresponding to B/W 

concentric annuli. It has shifted straight line fringes. 

The comparison of the fringe shift for the modulated apertures 

with the uniform circular aperture is shown as in the figures (13 

a, b).Uniform circular aperture of constant transmittance of 

diameter of 256 pixels is shown in the figure (13- a), while a 

shifted straight line fringes of constant value identifies the 

uniform circular aperture as shown in the figure (13- b). 

 
 

Figure (13- a): Uniform circular aperture of constant 

transmittance. The aperture has diameter of 256 pixels. 

 

 

 
Figure (13- b): Shifted straight line fringes of constant value 

identifies the uniform circular aperture shown in the figure 

(a). 

 

4. CONCLUSION 

We conclude that the selected models of  apertures are 

recognized referring to the corresponding fringe shift. It is 

shown linear fringe shift corresponding to the linearly 

distributed aperture.The aperture with conic distribution has 

similar linear fringe shift corresponding to the linearly 

distributed aperture butin opposite direction. While quadratic 

fringe shift manifests recognition of quadratically distributed 

aperture. Finally, the Gaussian fringe shift recognizes the 

Gaussian aperture which is characteristic of the laser beam 

propagation. The B/W concentric annuli has constant 

discontinuous fringe shift. The comparison with uniform circualr 

aperture which gives constant shift is given. The deviation from 

the linearly distributed aperture by an amount 10% transforms 

the fringe shift from linear to quadratic variation.   
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