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ABSTRACT 
In light of the latest global financial crisis and the ongoing 
sovereign debt crisis, accurate measuring of market losses has 
become a very current issue. One of the most popular risk 
measures is Value-at-Risk (VaR).  A set of symmetric and 
asymmetric GARCH type models based on various error 
distributions were applied on Dhaka Stock Exchange DS30 Index 
from January 28, 2013 to May 29, 2017  for estimating and 
forecasting the market Value-at-Risk of the index.  The most 
adequate GARCH family models for estimating volatility in the 
Dhaka stock exchange was found to be as the asymmetric 
TGARCH (1,1) model with GED. TGARCH (1,1) model with 
GED was allowed by Kupiec test with 99% of confidence level. 
The proposed VaR model would help the investors in their 
emerging capital markets.   
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1. INTRODUCTION 
Value-at-risk, as defined by P Jorion is “the worst loss over a 
target horizon with a given level of target probability”. P Jorion, 
Value-at-Risk: the Benchmark for Controlling Market risk, 
McGraw-Hill Professional Book Group. From a mathematical 
purpose of read, Value-at-Risk is simply a quantile of a return 
distribution function. The portfolio’s Value-at-Risk (VaR) may be 
a grade of its return distribution over a hard and fast horizon. 
Value-at-Risk (VaR) may be a risk calculation tool that relies on 
loss distributions. This risk was measured by few authors 
(Morgan, 1994; Linsmeier and Pearson, 1996).  
The estimation of VaR can be performed in different ways, e.g., 
historical, simulation, extreme value theory, modelling and so on 
(Brooks & Persand, 2003; Angelidis et al., 2004; Orhan and  
Köksal, 2012). One of the problems to estimate VaR in case of 
modelling is the volatility.  For this, GARCH family models 
might be used as the remedial method (Engle et al., 1987; Nelson, 
1991; Glosten et al., 1993; Zakoian, 1994; Schwert, 1989; Ding et 
al., 1993; French et al., 1987; Chou, 1988). For indices of Dhaka 
stock exchange, researchers have been working in many 
dimensions (Basher et al., 2007; Chowdhury, 1994, Hassan and 
Maroney, 2004; Chowdhury et al., 2006; Mulla, 2009; Hossain 

and Uddin, 2011; Rayhan et al., 2011; Islam et al., 2012; Alam et 
al., 2013; Mukit, 2013; Islam et al., 2014 an so on).  
Dhaka Stock Exchange DS30 index is the aggregate of top A 
category 30 indices. To the best of our knowledge, research on 
DS30 index is yet undone, moreover, VaR for DS30 index is also 
rare. The reason is that the non-normality and heavy tail of the 
heteroscedastic error distribution. Unreal facts of the securities 
market can be detected and discarded by the method of Heavy-tail 
distributions but generally GARCH models with heavy-tail 
distributions are comparatively higher fitted to analyzing returns 
on stocks (Alberg et al., 2006). The non-normality of the residual 
might be handled with different method, e.g., student-t, skewed-t, 
and generalized error distributions (Bollerslev, 1986; Engle, 1982; 
Nelson, 1991; Harvey, 1981; Hung-Chun and Jui-Cheng, 2010; 
Theodossiou, 1998 and so on). Thus, the purpose of the present 
study is to model and forecast the market Value-at-Risk of DS30 
index through GARCH family models with heavy tail distribution. 

2. METHOD 
The number of relevant risk factors can be terribly huge, probably 
reaching the thousands. We have a tendency to specialize in the 
additional elementary issue of activity the tail of the loss 
distribution, notably at giant losses. A target probability provides 
an easy manner of summarizing info regarding the tail of the loss 
distribution, and this explicit worth of the target probability is 
commonly taken as an inexpensive worst-case loss level. The 
importance of Value-at-Risk lies in its specialize in the tail of the 
loss distribution. Before estimating VaR we will estimate 
GARCH family models using the suitable software, the models to 
forecast the volatility. In consequence of these results, we have a 
tendency to settle for that the most effective model using the 
Akaike information Criterion (AIC), Bayesian Information 
Criterion (BIC), Hannan-Quinn (HQ) and log likelihood value. 
The DS30 index from Dhaka Stock Exchange series sample starts 
in 28 January 2013 and ends in 29 May 2017 for the following 
considerations. 

Historical simulation (HS) may be a non-parametric and 
unconditional technique. Its main advantage is that it's 
straightforward to implement and needs few assumptions. The key 
assumption is that the distribution of losses (or returns) within the 
portfolio is constant over the sample period and may be a decent 
predictor of forthcoming behavior. For this technique, i.e. if we 
have a tendency to invest in an exceedingly straightforward stock 
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or a portfolio, we have a tendency to take the historical returns for 
the last (say) a hundred days and type from the worst to the most 
effective return. If you would like to form the assessment for a 
confidence interval, i.e. 95% we have a tendency to state that the 
VaR 95% is adequate fifth lowest return. The interpretation of this 
value is “with a probability 95% the loss for ensuing day won't be 
worse than the fifth lowest return”. However, we must always 
take care once applying this technique as a result of it's terribly 
sensitive to the length of data because the sample might not be a 
decent representative of the right distribution (Dowd, 1998). 

VaR can be viewed as a gauge that summarizes the worst loss 
over a target horizon that will not be exceeded with a given level 
of confidence (Jorion, 2007). 

More formally, a (ߙ)VaR is expressed as 

Pr(ܮ > ܸܴܽ) = ߙ                                                                             

where ܮ is the loss on a given day and ߙ is the significance level. 
VaR is therefore a quantile in the distribution of profit and loss 
that is expected to be exceeded only with a certain probability, 
formally expressed as 

                                                                     

Throughout this thesis, the VaR figures will be given using a 1 % 
and 5 % significance level, i.e. 1 % and 5 % VaR estimates will 
be presented.  

VaR is computed using the conditional volatility of returns 
multiplied by the quantile of a given probability distribution, e.g. 
the Normal distribution as shown in Equation below: 

                                                            ߙ߶ݐߪ− = ܴܸܽ(ߙ)

where ߶ߙ in the Normal distribution is equal to -2,33 for a 1 % 
VaR and -1,65 for a 5 % VaR. Thus, VaR is presented as a 
positive number. 

2.1 Backtesting VaR 

Finding appropriate forecast models for VaR estimates needs a 
technique for assessing the predictions ex-post. The VaR 
estimates during this thesis are calculated by two checks: an 
unconditional and a conditional test of coverage originally 
developed by Kupiec (1995) and Christoffersen (1998) severally. 

Hereafter, daily return are tagged consistent with Equation (21) so 
as to outline whether or not the daily return exceeded the VaR 
estimate or not. The indicator variable is built as 

  = ݐߟ

where 1 specifies a violation and 0 specifies a return lower than 
the VaR. The violations are thenceforth summed and divided by 
the whole range of out-of-sample VaR estimates with the 
intention of getting the empirical size. 

2.2 Kupiec’s test 

Kupiec’s test was established to test whether or not the 
experiential proportion of violations congregate with the nominal 
proportion fixed by the VaR significance level. Kupiec (1995) 
recommends a likelihood ratio test created as in Equation below. 

               

where T is the number of out-of-sample estimates and F the 
observed number of violations. Hence, F/T is the empirical VaR 
size which follows the binominal distribution so F ~ B(T, p). ܿݑܴܮ 
follows the chi-square distribution with one degree of freedom, 
i.e. ܿݑܴܮ ~ χ2

(1), under the null hypothesis which states that F/T = 
p. Hence, a rejection of the null hypothesis implies that the 
empirical VaR size is significantly different from the stated VaR 
significance level, i.e. the nominal size. 

3. RESULTS 
The DS30 index series sample starts in 28 January 2013 and ends 
in 29 May 2017 for the following considerations. An initial 
investigation of data exhibits some indications about Dhaka stock 
market. In contrast to the identical Gaussian distribution, literature 
suggests that the distribution of stock returns exhibit the following 
features: skewness, leptokurtosis and volatility. For each 
observation, the simple daily stock log-returns at time t were 
calculated. 

 
Figure 1. Time series plot of daily DS30 index 

 
Figure 2. Daily returns of DS30 index 

Descriptive measures and histogram of DS30 index return series 
is displayed in Figure 3 negative skewness of returns were 
exhibited for DS30, and excess kurtosis also observed for the 
series. Normality tests (Jarque-Bera test ) were rejected (α=1%); 
the unit root tests (ADF and PP test) in Table 1 suggested that the 
return series is stationary, which is consistent with most financial 
time series data. 
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Figure 3. Histogram and descriptive statistics of DS30 returns 
 

Original data series is displayed in Figures 1 and volatility 
clustering is displayed in Figure 2 for the DS30 return index. In 
the Figure 2, it is noticeable that periods of low volatility are 
followed by periods of low volatility for a prolonged period, and 
periods of high volatility are followed by periods of high volatility 
for a prolonged period, which justifies the applications of ARCH 
family models. 

 
Figure 4. Series with 2 conditional standard deviation. 

 
Table 1 shows the ARCH effect as formulated by Engle (1982). In 
Table 1 show signs of heteroscedasticity in DS30 index; this 
indicates the necessity of using some other ARCH family models.  
The ARCH model was estimated for daily returns index using the 
ML - ARCH (Marquardt) - Normal distribution. The AIC, BIC 
information criteria and a set of model diagnostic tests such as 
ARCH-LM test were applied to choose the volatility models 
which represent the conditional variance appropriately. 

Table 1. Unit root test and ARCH-LM test of DS30 return series. 
Value ADF PP 

t- statistic -28.18617 -27.84357 
p value  0.0000 0.0000 
      

ARCH-LM test statistic 179.36 
p value 0.0000 

 

Table 2 gives results parameters estimation, AIC BIC, Hannan-
Quinn, log likelihood value and ARCH-LM test. Several GARCH 
models with symmetry and asymmetry models were fitted but 
selected four models was presented in the table. From the 
estimated models TGARCH (1,1) with GED is better performing 
by using AIC BIC, HQ and log likelihood value. And ARCH-LM 
test suggest that there is no remaining ARCH effect. 

After estimating the different GARCH-type models, we obtained 
the standardized residuals from these models to carry out the 
diagnosis tests to establish the goodness of fit of these alternative 
models. In theory, the standardized residuals are expected to have 
a mean of zero and a variance of unity. 

Table 2. Maximum Likelihood estimates of several GARCH 
models. 

Parameters GARCH(1,1) 
GED 

GARCH(1,1) 
NOR 

TGARCH(1,1) 
NOR 

TGARCH(1,1) 
GED 

Variance 
Model 

     

ω 
(constant) 

 
0.01015     0.01191 0.01238   

 
0.01098  

α (ARCH 
effect) 

 
0.14511     0.15133     0.11464  

 
0.11088  

β 
(GARCH 
effect) 

 
0.85160     

0.84315     0.84464   

 
0.84897  

 
(Leverage 
effect) 

 
 
- 

 
 
- 0.07357 

 
 
0.07805  

Log 
likelihood 

-1249.659 -1257.572 -1253.856 -1246.387 

AIC 2.3993 2.4126 2.4074 2.3950 
BIC 2.4183 2.4268 2.4263 2.4157 
HQ 2.4065 2.4180 2.4146 2.4040 
ARCH-
LM 
statistics 

 
 
0.08806  

 
 
0.05132   

 
 
0.0000688  

 
 
2.876e-05 

p value 0.7667 0.8208 0.9934 0.9957 
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Figure 5. Density of Standardized Residuals for fitted 

TGARCH(1,1) model. 
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Figure 6. Normal QQ Plot for fitted TGARCH (1,1) model. 
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Figure 7. ACF of Squared Standardized Residuals for fitted 

TGARCH (1,1) model. 

Figure 4 to Figure 7 represent that the fitted model is reasonably 
well. In other words, the model considered to best fit data will be 
the one with the distribution of standardized residuals the most 
close to normal distribution. Simultaneously, they should not have 
any autocorrelation. For proving asymmetry information Figure 8 
represent the news impact curve. This is the strong indication that 
the TGARCH (1,1) model is appropriate. 
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Figure 8. News impact curve for fitted TGARCH (1,1) model. 

Once we have fitted the TGARCH which modeled the risk. We 
would like to check the model performance by performing 
historical backtest. For that, we can compare the estimated VaR 
(value at risk) with the actual return over the period. If the return 
is more negative than the VaR, we have a VaR exceedance. In our 
case, a VaR exceedance should only occur in 1% of the cases if 
we specified a 99% confidence level. VaR at 1% shows what 1% 
probability of my extreme loss. 

VaR and Conditional VaR (CVaR) are the measures of risk 
measure in finance. Both measures are used to value at risk. 
CVaR generally considered as average potential losses. VaR and 

CVaR are most commonly measure at three different ways, 95%, 
99% and 99.9%. From Table 4.22 it is observed that VaR 95% is 
negative 1.53%, which means that there is a 5% chance, you lose 
1.53% or more portfolio value in a single day. This value is 
derived from historical value so the values may differ.  

Table 3. Value-at-Risk value of DS30 Return Index 

VaR(5%) -1.53% CVaR(5%) -2.13% 

VaR(1%) -2.72% CVaR(1%) -3.11% 

VaR(0.1%) -5.04% CVaR(0.1%) -4.83% 

Similarly VaR 99% and VaR 99.9% are -2.72% and -5.04% 
respectively, which means that there is a 1% and 0.1% chance, 
you lose 2.72% and 5.04% respectively or more portfolio value in 
a single day. Finally exactly how much you loose on average on 
worst cases scenarios you have to look at CVaR values. CVaR 
95% means, in the worst 5% returns the average loss will be 
2.13%. Likewise, if CVaR 99% means, in the worst 1% returns 
the average loss will be 3.11% and for 99.9% the worst 0.1% 
returns the average loss will be 4.83%.  

The outcome of our backtest with a rolling window is illustrated 
below in Figure 10. From Figure 10 it shows the number of 
exceedances for each VaR model, with an alpha level set at one 
percent for the backtest conducted between 2013 and 2017. The 
black line represents the Value-at-Risk level, forecasted for a 
period length of 925 observations with a one day moving window 
that refits every 120th step. All the returns are plotted and, as 
observed, some observations have returns lower than the Value-
at-Risk level. These observations are called exceedances and are 
marked red in the graph. 
The VaR accumulate 5 exceedances over the backtest period 
though the expected exceed was 9.2. Therefore, the TGARCH 
model may be the best estimating Value-at-Risk.  

Table 4. Value-at-Risk Backtest Report of DS30 return index 
Backtest Evaluation  Model: TGARCH-GED 
Backtest Length  925  
Alpha  1%  
Expected Exceed  9.2  
Actual VaR Exceed  5 
Actual %:                        0.5% 

Unconditional Coverage (Kupiec)  
Null-Hypothesis Correct Exceedances 
LR.uc Statistic  2.368 
LR.uc Critical  6.635 
LR.uc p-value  0.124 
Reject Null  NO  

 
Table 4 provides statistics for our backtest evaluation results. 
Counting the number of exceedances, we find that the expected 
number of exceedances. 
The test indicates that we cannot reject model because its 
exceedances are lower than the expected number. The results of 
the unconditional coverage test show that the null hypothesis 
holds for all models since neither of them have a likelihood ratio 
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statistic surpassing the critical value from the chi-square table. 
This is also indicated by the p-values, which are not below the 
0.05 level associated with the 95 percent confidence level of the 
test. The confidence interval of the unconditional coverage test 
has a non-rejection region between 4 and 17. Thus, the null-
hypothesis that the forecasted exceedances fall inside the correct 
interval cannot be rejected. 
Figure 10 compare the number of expected versus actual 
exceedances given the tail probability of VaR, we can see the 
Kupiec's unconditional coverage test tests a test of the 
unconditional coverage of the exceedances. If the actual 
exceedances are smaller than the expected exceedances then we 
can't reject the null hypothesis that the exceedances are correct. 

 
Figure 9. Series with 1% VaR limits 

 
Figure 10. Daily returns of DS30 index and Value-at-Risk 

exceedances (VaR forecast) (alpha=0.01) 
Here, in the Figure 9 the returns of the data (blue) hits the 1% Var 
(Red) 5 times compare to 9.2 times expected. Hence we cannot 
state the rejection of the null hypothesis that the exceedances are 
correct. The p-values of Kupiec's unconditional coverage is not 
less than 5% and the Kupiec's unconditional coverage test 
suggests that the null hypothesis is not rejected. Hence model 
should be used in real life. So forecasting is very necessary 
however we will forecast for the next.  

Table 5. Forecasted value of VaR 

Time             Series    Sigma 
T+1  -0.04665 0.5057 
T+2 -0.01066 0.5124 
T+3   0.01190 0.5191 
T+4   0.02604 0.5257 
T+5  0.03490 0.5321 
T+6 0.04046 0.5385 
T+7 0.04394 0.5449 
T+8 0.04612 0.5511 
T+9 0.04749 0.5573 

T+10 0.04835 0.5634 

The forecasts for the volatility are given by sigma and 1% VaR is 
given just by the side for each period. For the period T+3, the 
expected volatility is 0.01190 and the 1% Value at Risk is 0.5191. 

4. CONCLUSION 
The conclusions arrived are the following: 
To estimate the volatility is important to develop a model that 
contemplate the movements of the volatility within the time 
series, for that reason, the standard volatility don’t follows the 
market variations, and also the forecast of the market power unit 
have in bound moment more than reserve and in alternative 
moments an absence of reserve, once we do the estimation 
exploitation this traditional volatility with a significant tail 
distribution. 

The asymmetric GARCH models, like TGARCH model, solely 
fulfill with the movements of the volatility, as we will observe 
with the back testing conferred, conjointly it's necessary to use the 
significant tails distributions. 

The time series history fulfills with the necessities of Basel 
Committee, to create the volatility forecast. It's simple to show 
this model to the traders benefit. The traders and also the investors 
solely the recent past import them. 

The models as we are able to observe are dynamic, and is 
extremely vital the revision of those models periodically. 
The final impartial is extant a precise reserve that covers the 
utmost loss potential, and this reserves might have a value that 
corresponds with the truth. Once we announce the VaR 
restrictions for the traders and for the managers, the forecast of the 
reserve is also a reputable worth at impact that traders and 
managers use this information for decision-making. Conjointly the 
market VaR together with the credit risk and operational risk 
serves to calibrate the whole risk of a performance of the 
corporate. 
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