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ABSTRACT 
Mining patterns from large dataset is an interested data mining 
problem. Many methods have been developed for this purpose till 
today. Most of the methods considered the time attributes as one 
of the normal attribute. However taking the time attribute into 
account separately the patterns can be extracted which cannot be 
extracted by normal methods. These patterns are termed as 
temporal patterns A couple of works have already been done in 
mining temporal patterns. A nice algorithm  for mining locally 
frequent patterns from temporal datasets is proposed by Anjana et 
al. In this article, we propose a hash-tree based implementation of 
the algorithm.  We also established the fact that the hash-tree 
based outperforms others.  
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1. INTRODUCTION 
The problem frequent item set mining is well- researched field of 
data mining and is associated with association rule mining in 
market basket data [1]. There are a number of algorithms 
proposed till today for mining such datasets. A-priori algorithm 
[2],  is one of the most popular algorithms. But market basket data 
are usually temporal in nature e.g. when a transaction happens the 
time of transaction is also recorded with the transaction. 
Considering the time features of such datasets, some interesting 
patterns can be extracted which otherwise cannot be extracted. In 
[3], Ale et al devised a method of extracting association rules 
which hold throughout the life-time of an itemset where the life-
time of an item set is defined as the time period between the first 
transaction and last transaction containing the item set and it may 
not be same as that of dataset. Although the algorithm [3] extracts 
much more rules than normal A-priori algorithm, it has some 
limitations. For example, the method works well if the items are 
uniformly distributed in the transactions throughout its life-time. 
But in practice there may exist items, which may not be uniformly 
distributed in the transactions throughout their lifetime e.g. 
seasonal items like cold drinks.  For such items if the items life-
time is taken into consideration, they may not turn out to be 
frequent because of the large time period when the item is absent 
in the transaction or even if the items are frequent then they will 
have very small support value. Considering the seasonal behavior 
of certain items in the transactions, B. Ozden et al [4] put forward 
a method of finding cyclic association rules where they proposed 
algorithms to extract all such rules holding within a user-specified 
time period. Once the user chooses the time period it will be fixed 
throughout the execution of the algorithm. In [5, 6], authors tried 

to address the above limitations. The frequent itemsets extracted 
by [5, 6] is known as locally frequent itemsets. In this paper, our 
discussions are mostly emphasized on the implementation side of 
[5, 6]. We propose here a hash-based implementation of the 
algorithm [5, 6]. The nicety about the hash-tree based 
implementation is that it reduces  the number of comparisons and 
store the candidate in a hash-tree. This paper is organized as 
follows. In section-2, we discuss about definitions and notations 
used in [5, 6]. In section-3, we discuss the algorithm of [5, 6]. In 
section-4, we discuss about the detailed implementation. 
Conclusion and Lines for future works are discussed in section-5. 
 
2. TERMS, DEFINITIONS AND 
NOTATIONS USED 

Let Let T = <to, t1…> be a sequence of time-stamps over 
which a linear ordering < is defined where ti < tj means ti denotes 
a time which is earlier than tj. Let I denote a finite set of items and 
the transaction dataset D is a collection of transactions where each 
transaction has a part which is a subset of the item set I and the 
other part is a time-stamp indicating the time in which the 
transaction had taken place. We assume that D is ordered in the 
ascending order of the time-stamps. For time intervals we always 
consider closed intervals of the form [t1, t2] where t1 and t2 are 
time-stamps.  We say that a transaction is in the time interval [t1, 
t2] if the time-stamp of the transaction say t is such that t1  t  t2. 

We define the local support of an item set in a time interval 
[t1, t2] as the ratio of the number of transactions in the time 
interval [t1, t2] containing the item set to the total number of 
transactions in [t1, t2] for the whole dataset D. We use the 

notation 1 2[ , ]t tSupp
(X) to denote the support of the item set X in 

the time interval [t1, t2]. Given a threshold  we say that an item 

set X is frequent in the time interval [t1, t2] if 1 2[ , ]t tSupp
(X)  

(/100)* tc where tc denotes the total number of transactions in D 
that are in the time interval [t1, t2]. 

 
3. FINDING LOCALLY FREQUENT 
ITEMSETS WITH ASSOCIATED TIME 
INTERVALS 

Here for the sake of convenience, we discuss the algorithm 
used in [5, 6] for finding locally frequent itemsets. While 
constructing locally frequent sets, with each locally frequent set a 
list of time-intervals is constructed in which the set is frequent. 
Two thresholds minthd1 and minthd2 are used and these are given 
as input. During execution, while making a pass through the 
database, if for a particular item set the time gap between its 
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current time-stamp and the time when it was last seen (before the 
current time-stamp) is less than the value of minthd1 then the 
current transaction is included in the current time-interval under 
consideration; otherwise a new time-interval is started with the 
current time-stamp as the starting point. The support count of the 
item set in the previous time interval is checked to see whether it 
is frequent in that interval or not and if it is then it is added to the 
list maintained for that set. Also for the locally frequent sets a 
minimum period length is given by the user as minthd2 and time 
intervals of length greater than or equal to this value are only kept. 
If minthd2 is not used than an item appearing once in the whole 
database will also become locally frequent. 

Procedure to compute L1, the set of all locally frequent item 
sets of size 1. 

For each item while going through the database we always 
keep a time-stamp called lastseen that corresponds to the time 
when the item was last seen. When an item is found in a 
transaction and the time-stamp is tm and the time gap between 
lastseen and tm is greater than the minimum threshold given, then 
a new time interval is started by setting start of the new time 
interval as tm and end of the previous time interval as lastseen. 
The previous time interval is added to the list maintained for that 
item provided that the duration of the interval and the support of 
the itemset in that interval are both greater than or equal to the 
minimum thresholds specified for each. Otherwise lastseen is set 
to tm, the counters maintained for counting transactions are 
increased appropriately and the process is continued.  Following is 
the algorithm to compute L1, the list of locally frequent sets of 
size-1. Suppose the number of items in the dataset under 
consideration is n and we assume an ordering among the items. 

Algorithm 1 
C1 = {(ik,tp[k]) : k = 1,2,…..,n}  

 where ik is the k-th item and tp[k] points to a list of time intervals initially 

empty 

for k = 1 to n do 

       set lastseen[k], icount[k] ctcount[k] and ptcount[k]  to zero 

for each transaction t in the database with time stamp tm do 

   {for k = 1 to n do 

       {if ({ik}  t) then 

           {if(lastseen[k] == 0) 

                  {lastseen[k] = firstseen[k] = tm; 

                   icount[k] = ptcount[k]=ctcount[k] =1; 

                  } 

             else  if (|tm – lastseen[k]| < minthd1) 

                        {lastseen[k]=tm; itemcount[k]++;     

                          ctcount[k]++; ptcount[k]=ctcount[k]; 

                        } 

                   else 
                       {if ((|lastseen[k] – firstseen[k]|   minthd2)  
                                    &&(icount[k]/ptcount[k]*100  )) 
                             add(firstseen[k], lastseen[k]) to tp[k]; 
                        icount[k] = ptcount[k] = ctcount[k]= 1; 
                        lastseen[k] = firstseen[k] = tm; 
                     } 
            } 
         else ctcount[k]++;  
       }               // end of k-loop //                      
   }     // end of do loop // 
for k = 1 to n do 
   {if ((|lastseen[k] – firstseen[k]|   mintdh2)  and     
             (icount[k] /ptcount[k] * 100  )) 
                  add  (firstseen[k], lastseen[k] ) to tp[k]; 
     if(tp[k] != 0) add (ik, tp[k]) to L1 
 }      
After this, A-priori candidate generation algorithm is used to find 
candidate frequent sets of size-2 and then pruning is applied. With 
each candidate frequent set of size-2 we associate a list of time 
intervals. In the candidate generation phase this list is empty. 
During the pruning phase this list is constructed. The procedure of 
construction is that when the first subset of an item set appearing 
in the previous level is found then that list is taken as the list of 
time intervals associated with the set. When subsequent subsets 
are found then the list is reconstructed by taking all possible pair 
wise intersection of subsets one from each list. If this list becomes 
empty at any point of time or when a particular subset of the item 
set under consideration is not found in the pervious level then the 
set is pruned. Pair-wise intersection of the interval lists are taken 
for the following reason. If in an interval say [t, t’] an item set say 
{A,B} is frequent then there exits two time periods [t1, t1’] and 
[t2, t2’] in which the item sets {A} and {B} are respectively 
frequent and [t, t’]  [t1, t1’]  [t2, t2’]. Using this concept we 
describe below the modified A-priori algorithm for the problem 
under consideration. 
Algorithm 2 
Modified A priori 
Initialize  
  k = 1; 
C1 = all item sets of size-1 
L1 = { frequent item sets of size-1 where with each itemset {ik} a list 
tp[k] is maintained           which gives all time intervals in which the set 
is frequent} 
L1 is computed using algorithm 3.1 */ 
for(k = 2; Lk-1   ; k++) do 

       { Ck = apriorigen(Lk-1) 
/* same as the candidate generation method of the A-priori algorithm 
setting tp[i] to zero for all i*/ 
         prune(Ck); 
        drop all lists of time intervals maintained with the sets in Ck 
       Compute Lk from Ck. 
//Lk can be computed from Ck using the same procedure used for 
computing L1 // 
       k = k + 1 
      } 

 Answer = 


k
kL

 

Prune(Ck) 
{Let m be the number of sets in Ck and let the sets be s1, s2,…, sm. 
Initialize the pointers tp[i] pointing  to  the list of time-intervals 
maintained with each set si to null 

Three support counts icount, ctcount and ptcount are maintained 
with each item. When an item is first seen then these are 
initialized to 1. For each item while making a pass through the 
dataset when a transaction containing the item is found then 
icount for that item is increased. To see whether an item is 
frequent in an interval the total number of transactions in that 
interval will have to be counted. For this with each item two 
counts ptcount and ctcount are kept. The value of ctcount 
increases with each transaction but ptcount changes its value 
only when a transaction containing an item is found within 
minthd1 from current value of lastseen and then it takes the 
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for i = 1 to m do 
     {for each (k-1) subset d of si do 

          {if d  Lk-1 then 

               {Ck = Ck - {si, tp[i]}; break;} 
          else 
            {if (tp[i] == null) then set tp[i] to point to the list of time intervals 
maintained for d 

   else { take all possible pair-wise intersection of time intervals 
one from each list,                             

                          one list maintained with tp[i] and the other maintained with d 
and take this as the list                 

                              for tp[i] 
                  delete all time intervals whose size is less than the value of 

minthd2  
        if tp[i] is empty then {Ck = Ck - {si,tp[i]}; 
                                                      break;   } 
                   } 
           } 
        } 
     } 
 }    
 
4. IMPLEMENTATION 
4.1 Data Structure Used 

The candidate generation and the support counting processes 
require an efficient data structure. Hash-tree  data structure is used 
in this purpose because it reduces the number of comparisons by 
storing the candidate in hash-tree and hence making the execution 
of the algorithm faster. 

 
Figure 1: Graph of frequent itemsets for retail dataset 

 
Figure 2: Graph of frequent itemsets for T10I4D100K dataset 

In above two graphs the green lines are associated with execution 
of hash tree- based implementation and red lines are that of trie-
based implementation. The two figures clearly show that the in 
hash tree-based implementation the execution is faster. It 
establishes the fact that hash tree-based implementation is more 
efficient than trie-based implementation. 
 
5. CONCLUSIONS 
In this paper, we present hash tree -based implementation of the 
algorithm [5, 6] and [3]. We  made a comparative study with the 
performance of trie-based implementation. It is found that hash 
tree-based implementation is much faster than the trie-based 
implementation irrespective of the datasets under consideration by 
reducing the number comparisons in candidate generation. Thus it 
outperforms trie-based implementation. In future, we will go for 
other type of implementation like kd-tree based. 
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4.2 Datasets 
For the experiments we performed here, we used two datasets 
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http://fimi.cs.helsinki.fi/testdata.html.   

4.3 Analysis of Obtained Results  
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