
International Journal of Innovative Research in Engineering & Management (IJIREM)
ISSN: 2350-0557, Volume-3, Issue-1, January-2016

55

An Efficient Implementation of an Algorithm for Mining
Locally Frequent Patterns

Fokrul Alom Mazarbhuiya
College of Computer Science & IT, Albaha University, Albaha, KSA

fokrul_2005@yahoo.com

ABSTRACT
Mining patterns from large dataset is an interested data mining
problem. Many methods have been developed for this purpose till
today. Most of the methods considered the time attributes as one
of the normal attribute. However taking the time attribute into
account separately the patterns can be extracted which cannot be
extracted by normal methods. These patterns are termed as
temporal patterns A couple of works have already been done in
mining temporal patterns. A nice algorithm for mining locally
frequent patterns from temporal datasets is proposed by Anjana et
al. In this article, we propose a hash-tree based implementation of
the algorithm. We also established the fact that the hash-tree
based outperforms others.

Keywords
Data Mining, Frequent patterns, Temporal patterns, Locally
frequent patterns.

1. INTRODUCTION
The problem frequent item set mining is well- researched field of
data mining and is associated with association rule mining in
market basket data [1]. There are a number of algorithms
proposed till today for mining such datasets. A-priori algorithm
[2], is one of the most popular algorithms. But market basket data
are usually temporal in nature e.g. when a transaction happens the
time of transaction is also recorded with the transaction.
Considering the time features of such datasets, some interesting
patterns can be extracted which otherwise cannot be extracted. In
[3], Ale et al devised a method of extracting association rules
which hold throughout the life-time of an itemset where the life-
time of an item set is defined as the time period between the first
transaction and last transaction containing the item set and it may
not be same as that of dataset. Although the algorithm [3] extracts
much more rules than normal A-priori algorithm, it has some
limitations. For example, the method works well if the items are
uniformly distributed in the transactions throughout its life-time.
But in practice there may exist items, which may not be uniformly
distributed in the transactions throughout their lifetime e.g.
seasonal items like cold drinks. For such items if the items life-
time is taken into consideration, they may not turn out to be
frequent because of the large time period when the item is absent
in the transaction or even if the items are frequent then they will
have very small support value. Considering the seasonal behavior
of certain items in the transactions, B. Ozden et al [4] put forward
a method of finding cyclic association rules where they proposed
algorithms to extract all such rules holding within a user-specified
time period. Once the user chooses the time period it will be fixed
throughout the execution of the algorithm. In [5, 6], authors tried

to address the above limitations. The frequent itemsets extracted
by [5, 6] is known as locally frequent itemsets. In this paper, our
discussions are mostly emphasized on the implementation side of
[5, 6]. We propose here a hash-based implementation of the
algorithm [5, 6]. The nicety about the hash-tree based
implementation is that it reduces the number of comparisons and
store the candidate in a hash-tree. This paper is organized as
follows. In section-2, we discuss about definitions and notations
used in [5, 6]. In section-3, we discuss the algorithm of [5, 6]. In
section-4, we discuss about the detailed implementation.
Conclusion and Lines for future works are discussed in section-5.

2. TERMS, DEFINITIONS AND
NOTATIONS USED

Let Let T = <to, t1…> be a sequence of time-stamps over
which a linear ordering < is defined where ti < tj means ti denotes
a time which is earlier than tj. Let I denote a finite set of items and
the transaction dataset D is a collection of transactions where each
transaction has a part which is a subset of the item set I and the
other part is a time-stamp indicating the time in which the
transaction had taken place. We assume that D is ordered in the
ascending order of the time-stamps. For time intervals we always
consider closed intervals of the form [t1, t2] where t1 and t2 are
time-stamps. We say that a transaction is in the time interval [t1,
t2] if the time-stamp of the transaction say t is such that t1  t  t2.

We define the local support of an item set in a time interval
[t1, t2] as the ratio of the number of transactions in the time
interval [t1, t2] containing the item set to the total number of
transactions in [t1, t2] for the whole dataset D. We use the

notation 1 2[,]t tSupp
(X) to denote the support of the item set X in

the time interval [t1, t2]. Given a threshold  we say that an item

set X is frequent in the time interval [t1, t2] if 1 2[,]t tSupp
(X) 

(/100)* tc where tc denotes the total number of transactions in D
that are in the time interval [t1, t2].

3. FINDING LOCALLY FREQUENT
ITEMSETS WITH ASSOCIATED TIME
INTERVALS

Here for the sake of convenience, we discuss the algorithm
used in [5, 6] for finding locally frequent itemsets. While
constructing locally frequent sets, with each locally frequent set a
list of time-intervals is constructed in which the set is frequent.
Two thresholds minthd1 and minthd2 are used and these are given
as input. During execution, while making a pass through the
database, if for a particular item set the time gap between its

An Efficient Implementation of an Algorithm for Mining Locally Frequent Patterns

56

current time-stamp and the time when it was last seen (before the
current time-stamp) is less than the value of minthd1 then the
current transaction is included in the current time-interval under
consideration; otherwise a new time-interval is started with the
current time-stamp as the starting point. The support count of the
item set in the previous time interval is checked to see whether it
is frequent in that interval or not and if it is then it is added to the
list maintained for that set. Also for the locally frequent sets a
minimum period length is given by the user as minthd2 and time
intervals of length greater than or equal to this value are only kept.
If minthd2 is not used than an item appearing once in the whole
database will also become locally frequent.

Procedure to compute L1, the set of all locally frequent item
sets of size 1.

For each item while going through the database we always
keep a time-stamp called lastseen that corresponds to the time
when the item was last seen. When an item is found in a
transaction and the time-stamp is tm and the time gap between
lastseen and tm is greater than the minimum threshold given, then
a new time interval is started by setting start of the new time
interval as tm and end of the previous time interval as lastseen.
The previous time interval is added to the list maintained for that
item provided that the duration of the interval and the support of
the itemset in that interval are both greater than or equal to the
minimum thresholds specified for each. Otherwise lastseen is set
to tm, the counters maintained for counting transactions are
increased appropriately and the process is continued. Following is
the algorithm to compute L1, the list of locally frequent sets of
size-1. Suppose the number of items in the dataset under
consideration is n and we assume an ordering among the items.

Algorithm 1
C1 = {(ik,tp[k]) : k = 1,2,…..,n}

 where ik is the k-th item and tp[k] points to a list of time intervals initially

empty

for k = 1 to n do

 set lastseen[k], icount[k] ctcount[k] and ptcount[k] to zero

for each transaction t in the database with time stamp tm do

 {for k = 1 to n do

 {if ({ik}  t) then

 {if(lastseen[k] == 0)

 {lastseen[k] = firstseen[k] = tm;

 icount[k] = ptcount[k]=ctcount[k] =1;

 }

 else if (|tm – lastseen[k]| < minthd1)

 {lastseen[k]=tm; itemcount[k]++;

 ctcount[k]++; ptcount[k]=ctcount[k];

 }

 else
 {if ((|lastseen[k] – firstseen[k]|  minthd2)
 &&(icount[k]/ptcount[k]*100  ))
 add(firstseen[k], lastseen[k]) to tp[k];
 icount[k] = ptcount[k] = ctcount[k]= 1;
 lastseen[k] = firstseen[k] = tm;
 }
 }
 else ctcount[k]++;
 } // end of k-loop //
 } // end of do loop //
for k = 1 to n do
 {if ((|lastseen[k] – firstseen[k]|  mintdh2) and
 (icount[k] /ptcount[k] * 100  ))
 add (firstseen[k], lastseen[k]) to tp[k];
 if(tp[k] != 0) add (ik, tp[k]) to L1
 }
After this, A-priori candidate generation algorithm is used to find
candidate frequent sets of size-2 and then pruning is applied. With
each candidate frequent set of size-2 we associate a list of time
intervals. In the candidate generation phase this list is empty.
During the pruning phase this list is constructed. The procedure of
construction is that when the first subset of an item set appearing
in the previous level is found then that list is taken as the list of
time intervals associated with the set. When subsequent subsets
are found then the list is reconstructed by taking all possible pair
wise intersection of subsets one from each list. If this list becomes
empty at any point of time or when a particular subset of the item
set under consideration is not found in the pervious level then the
set is pruned. Pair-wise intersection of the interval lists are taken
for the following reason. If in an interval say [t, t’] an item set say
{A,B} is frequent then there exits two time periods [t1, t1’] and
[t2, t2’] in which the item sets {A} and {B} are respectively
frequent and [t, t’]  [t1, t1’]  [t2, t2’]. Using this concept we
describe below the modified A-priori algorithm for the problem
under consideration.
Algorithm 2
Modified A priori
Initialize
 k = 1;
C1 = all item sets of size-1
L1 = { frequent item sets of size-1 where with each itemset {ik} a list
tp[k] is maintained which gives all time intervals in which the set
is frequent}
L1 is computed using algorithm 3.1 */
for(k = 2; Lk-1   ; k++) do

 { Ck = apriorigen(Lk-1)
/* same as the candidate generation method of the A-priori algorithm
setting tp[i] to zero for all i*/
 prune(Ck);
 drop all lists of time intervals maintained with the sets in Ck
 Compute Lk from Ck.
//Lk can be computed from Ck using the same procedure used for
computing L1 //
 k = k + 1
 }

 Answer =


k
kL

Prune(Ck)
{Let m be the number of sets in Ck and let the sets be s1, s2,…, sm.
Initialize the pointers tp[i] pointing to the list of time-intervals
maintained with each set si to null

Three support counts icount, ctcount and ptcount are maintained
with each item. When an item is first seen then these are
initialized to 1. For each item while making a pass through the
dataset when a transaction containing the item is found then
icount for that item is increased. To see whether an item is
frequent in an interval the total number of transactions in that
interval will have to be counted. For this with each item two
counts ptcount and ctcount are kept. The value of ctcount
increases with each transaction but ptcount changes its value
only when a transaction containing an item is found within
minthd1 from current value of lastseen and then it takes the

International Journal of Innovative Research in Engineering & Management (IJIREM)
ISSN: 2350-0557, Volume-3, Issue-1, January-2016

57

for i = 1 to m do
 {for each (k-1) subset d of si do

 {if d  Lk-1 then

 {Ck = Ck - {si, tp[i]}; break;}
 else
 {if (tp[i] == null) then set tp[i] to point to the list of time intervals
maintained for d

 else { take all possible pair-wise intersection of time intervals
one from each list,

 one list maintained with tp[i] and the other maintained with d
and take this as the list

 for tp[i]
 delete all time intervals whose size is less than the value of

minthd2
 if tp[i] is empty then {Ck = Ck - {si,tp[i]};
 break; }
 }
 }
 }
 }
 }

4. IMPLEMENTATION
4.1 Data Structure Used

The candidate generation and the support counting processes
require an efficient data structure. Hash-tree data structure is used
in this purpose because it reduces the number of comparisons by
storing the candidate in hash-tree and hence making the execution
of the algorithm faster.

Figure 1: Graph of frequent itemsets for retail dataset

Figure 2: Graph of frequent itemsets for T10I4D100K dataset

In above two graphs the green lines are associated with execution
of hash tree- based implementation and red lines are that of trie-
based implementation. The two figures clearly show that the in
hash tree-based implementation the execution is faster. It
establishes the fact that hash tree-based implementation is more
efficient than trie-based implementation.

5. CONCLUSIONS
In this paper, we present hash tree -based implementation of the
algorithm [5, 6] and [3]. We made a comparative study with the
performance of trie-based implementation. It is found that hash
tree-based implementation is much faster than the trie-based
implementation irrespective of the datasets under consideration by
reducing the number comparisons in candidate generation. Thus it
outperforms trie-based implementation. In future, we will go for
other type of implementation like kd-tree based.

REFERENCES
[1] R. Agrawal, T. Imielinski and A. N. Swami, Mining
association rules between sets of items in large databases, In Proc.
of 1993 ACM SIGMOD Int’l Conf on Management of Data, Vol.
22(2) of SIGMOD Records, ACM Press, (1993), pp 207-216.

[2] R. Agrawal and R. Srikant; Fast Algorithms for Mining
Association Rules, In Proc. of the 20th VLDB Conf., Santiago,
Chile, 1994.

[3] J. M. Ale and G. H. Rossi; An approach to discovering
temporal association rules, In Proc. of 2000 ACM symposium on
Applied Computing (2000).

[4] B. Ozden, S. Ramaswamy and A. Silberschatz; Cyclic
Association Rules, In Proc. of the 14th Int’l Conf. on Data
Engineering, USA (1998), pp. 412-421.

[5] A. K. Mahanta, F. A. Mazarbhuiya and H. K. Baruah; Finding
Locally and Periodically Frequent Sets and Periodic Association
Rules, In Proc. of 1st Int’l Conf. on Pattern Recognition and
Machine Intelligence, LNCS 3776 (2005), pp. 576-582.

4.2 Datasets
For the experiments we performed here, we used two datasets
with different characteristics. We have experimented using one
retail dataset [7], and one synthetic dataset available at
http://fimi.cs.helsinki.fi/testdata.html.

4.3 Analysis of Obtained Results
In this section we discuss about the comparative study of the
performances of hash-based implementation and trie-based
implementation. The results are described in the graphical form
in figure 1 and figure 2.

An Efficient Implementation of an Algorithm for Mining Locally Frequent Patterns

58

[6] A. K. Mahanta, F. A. Mazarbhuiya and H. K. Baruah, Finding
calendar-based periodic patterns, Pattern Recognition Letters,
vol.29, no.9, pp.1274-1284, 2008.

[7] Tom Brijs, G. Swinnen, K. Vanhoof and G. Wets; using
association rules for product assortment decisions: A case study.
In Knowledge Discovery and Data Mining (1999), pp.254-260.

