
 International Journal of Innovative Research in Engineering & Management (IJIREM)
 ISSN: 2350-0557, Volume-3, Issue-5, September-2016

Copyright © 2016. Innovative Research Publications. All Rights Reserved 431

Implementing K-Means for Achievement Study
between Apache Spark and Map Reduce

Dr.E.Laxmi Lydia,
Associate Professor,

Department of Computer
Science and Engineering,

Vignan's Institute Of
Information Technology,

Visakhapatnam,
Andhra Pradesh,

India.

Dr.A.Krishna Mohan,
Professor, Department of

Computer Science and
Engineering, JNTUK

Andhra Pradesh,
India.

Dr. M.Ben Swarup,
Professor, Department of

Computer Science and
Engineering, Vignan's

Institute Of Information
Technology, Visakhapatnam,

Andhra Pradesh,
India.

ABSTRACT
Huge Data has for quite some time been the subject of
enthusiasm for Computer Science fans around the globe,
and has increased much more conspicuousness in the later
times with the constant blast of information coming about
because of any semblance of online networking and the
journey for tech monsters to get entrance to more profound
investigation of their information. MapReduce and its
variations have been very fruitful in actualizing vast scale
information concentrated applications on ware groups.
Then again, a large portion of these frameworks are
manufactured around a non-cyclic information stream
demonstrate that is not suitable for other famous
applications. Unique MapReduce executes jobs in a
straightforward yet unbending structure design.
MapReduce changes step ("map"), a synchronization step
("shuffle"), and a stage to join results from every one of the
nodes in a cluster ("reduce"). Accordingly to defeat the
inflexible structure of guide and diminish we proposed the
as of late presented Apache Spark – both of which give a
handling model to breaking down enormous information.
The primary contender for "successor to MapReduce"
today is Apache Spark. Like MapReduce, it is an
extensively helpful engine, be that as it may it is proposed
to run various more workloads, and to do in that capacity
much speedier than the more prepared framework. In this
paper we contrast these two systems along and giving the
execution examination utilizing a standard machine
considering so as learning calculation for bunching (K-
Means) and through considering some different parameters
like scheduling delay, speed up, energy consumption than
the existing systems.

Keywords:
Spark, MapReduce, Hadoop, Big Data

1. INTRODUCTION

Another model of cluster computing has turned out to
be broadly well known, in which data-parallel
computations are executed on clusters of questionable
machines by systems that consequently give locality-aware
scheduling, fault tolerance, and load balancing. MapReduce

[11] spearheaded this model, while systems like Dryad [17]
and Map-Reduce-Merge [24] summed up the sorts of data
streams upheld.

These systems accomplish their scalability and fault
tolerance by giving a programming model where the client
makes non-cyclic data stream graphs to go input data
through an arrangement of operators. This permits the
hidden framework to oversee scheduling and to respond to
faults without client mediation.
While this data flow programming model is useful for a
large class of applications, there are applications that can't
be communicated proficiently as non-cyclic data flows. In
this paper, we concentrate on one such class of
applications: those that reuse a working arrangement of
data over numerous parallel operations. This incorporates
two use cases where we have seen Hadoop users report that
MapReduce is lacking:
Iterative employments: Many normal machine learning
algorithms apply a capacity more than once to the same
dataset to upgrade a parameter (e.g., through inclination
plummet). While every iteration can be communicated as a
MapReduce/Dryad work, every employment must reload
the data from disk, bringing about a huge performance
punishment.
Intelligent analytics: Hadoop is frequently used to run
specially appointed exploratory questions on large datasets,
through SQL interfaces, for example, Pig [21] and Hive [1].
In a perfect world, a user would have the capacity to stack a
dataset of enthusiasm into memory over various machines
and inquiry it more than once. Be that as it may, with
Hadoop, every inquiry acquires huge inertness (several
seconds) because it keeps running as a different
MapReduce occupation and peruses data from disk.
 This paper shows new cluster computing framework
called Spark, which bolsters applications with working sets
while giving comparative scalability and fault tolerance
properties to MapReduce.
The primary abstraction in Spark is that of a resilient
distributed dataset (RDD), which speaks to a read-just
accumulation of items partitioned over an arrangement of
machines that can be reconstructed if a segment is lost.
Clients can expressly store a RDD in memory crosswise
over machines and reuse it in numerous MapReduce-like
parallel operations. RDDs accomplish fault tolerance

Implementing K-Means for Achievement Study between Apache Spark an

Copyright © 2016. Innovative Research Publications. All Rights Reserved

through an idea of genealogy: if an allotment of a RDD is
lost, the RDD has enough data about how it was gotten
from different RDDs to have the capacity to remake only
that parcel. Despite the fact that RDDs are not a general
shared memory abstraction, they speak to a sweet
between expressivity from one perspective and scalability
and reliability then again, and we have discovered them
appropriate for an assortment of applications.
Spark is executed in Scala [5], a statically wrote high
programming language for the Java VM, and unc
functional programming interface like DryadLINQ [25].
Likewise, Spark can be utilized intelligently from an
altered version of the Scala interpreter, which permits the
client to characterize RDDs, functions, variables and
classes and utilize them in parallel operations on a cluster.
We trust that Spark is the main framework to permit a
productive, universally useful programming language to be
utilized intelligently to process extensive datasets on a
cluster.
Despite the fact that our usage of Spark is still a prototype,
early involvement with the framework is empowering. We
demonstrate that Spark can beat Hadoop by 10x in iterative
machine learning workloads and can be utilized
intelligently to filter a 39 GB dataset with sub
latency.

1.1 HADOOP ALONG WITH SPARK
 Hadoop as a big data processing technology has been
around for a long time and has ended up being the solution
of decision for processing large data sets. MapReduce is an
extraordinary solution for one-pass computations, yet not
extremely productive for use cases that require multi
computations and algorithms. Every progression in the data
processing work process has one Map phase and one
Reduce phase and you'll have to change over any utilization
case into MapReduce pattern to influence this solution.
The Job output data between every progression must be put
away in the circulated document framework before the
following stride can start. Thus, this methodology has a
tendency to be moderate because of replication and plate
stockpiling. Likewise, Hadoop solutions normally
incorporate bunches that are difficult to set up and oversee.
It likewise requires the incorporation of a few devices for
various big data use cases (like Mahout for Machine
Learning and Storm for streaming data processing).
 On the off chance that you needed to accomplish
something convoluted, you would need to string together a
progression of MapReduce jobs and execute them in
sequence. Each of those jobs was high-latency, and none
could begin until the past occupation had completed totally.
Spark permits programmers to create complex, multi
data pipelines utilizing coordinated non-
(DAG) design. It additionally underpins in
sharing crosswise over DAGs, so that diverse job
work with the same data.
Spark keeps running on top of existing Hadoop Distributed
File System (HDFS) framework to give improved and extra
usefulness. It gives backing to deploying Spark applications
in a current Hadoop v1 cluster (with SIMR
MapReduce) or Hadoop v2 YARN cluster or even Apache
Mesos. We ought to take a gander at Spark as another

Means for Achievement Study between Apache Spark and Map Reduce

Copyright © 2016. Innovative Research Publications. All Rights Reserved

allotment of a RDD is
lost, the RDD has enough data about how it was gotten
from different RDDs to have the capacity to remake only
that parcel. Despite the fact that RDDs are not a general
shared memory abstraction, they speak to a sweet-spot

essivity from one perspective and scalability
and reliability then again, and we have discovered them
appropriate for an assortment of applications.
Spark is executed in Scala [5], a statically wrote high-level
programming language for the Java VM, and uncovered a
functional programming interface like DryadLINQ [25].
Likewise, Spark can be utilized intelligently from an
altered version of the Scala interpreter, which permits the
client to characterize RDDs, functions, variables and

in parallel operations on a cluster.
We trust that Spark is the main framework to permit a
productive, universally useful programming language to be
utilized intelligently to process extensive datasets on a

k is still a prototype,
early involvement with the framework is empowering. We
demonstrate that Spark can beat Hadoop by 10x in iterative
machine learning workloads and can be utilized
intelligently to filter a 39 GB dataset with sub-second

PARK
Hadoop as a big data processing technology has been

around for a long time and has ended up being the solution
of decision for processing large data sets. MapReduce is an

pass computations, yet not
extremely productive for use cases that require multi-pass
computations and algorithms. Every progression in the data
processing work process has one Map phase and one
Reduce phase and you'll have to change over any utilization

to influence this solution.
The Job output data between every progression must be put
away in the circulated document framework before the
following stride can start. Thus, this methodology has a
tendency to be moderate because of replication and plate

ockpiling. Likewise, Hadoop solutions normally
incorporate bunches that are difficult to set up and oversee.
It likewise requires the incorporation of a few devices for
various big data use cases (like Mahout for Machine

ta processing).
On the off chance that you needed to accomplish

something convoluted, you would need to string together a
progression of MapReduce jobs and execute them in

latency, and none
past occupation had completed totally.

Spark permits programmers to create complex, multi-step
-cyclic diagram

(DAG) design. It additionally underpins in-memory data
sharing crosswise over DAGs, so that diverse jobs can

Spark keeps running on top of existing Hadoop Distributed
File System (HDFS) framework to give improved and extra
usefulness. It gives backing to deploying Spark applications
in a current Hadoop v1 cluster (with SIMR – Spark-Inside-
MapReduce) or Hadoop v2 YARN cluster or even Apache
Mesos. We ought to take a gander at Spark as another

option to Hadoop MapReduce as opposed to a substitution
to Hadoop. It's not proposed to supplant Hadoop but rather
to give an extensive and bound together answer for oversee
distinctive big data use cases and prerequisites. Figure
demonstrating the contrast amongst Hadoop and spark.

Figure 1 Difference between Hadoop and Spark

1.2 SPARK ARCHITECTURE
Spark Architecture incorporates taking after t
components:
Data Storage: Spark utilizes HDFS document framework
for information stockpiling purposes. It works with any
Hadoop perfect information source including HDFS,
HBase, Cassandra, and so forth.
Programming interface: The API gives
developers to make Spark based applications utilizing a
standard API interface. Spark gives API to Scala, Java, and
Python programming languages.
Resource Management: Spark can be conveyed as a Stand
alone server or it can be on a distrib
framework like Mesos or YARN. Figure 2 below shows
these components of Spark architecture model.

Figure 2. Spark Architecture

1.3 INTELLECTION TO DESIG
 Sparkle utilizes the idea of RDD which permits us to
store data on memory and persevere it according to the
prerequisites. This permits a massive increment in batch
processing job execution (up to ten to hundred times as
much as that of routine Map Reduce).

d Map Reduce

 432

option to Hadoop MapReduce as opposed to a substitution
to Hadoop. It's not proposed to supplant Hadoop but rather

nd together answer for oversee
distinctive big data use cases and prerequisites. Figure1
demonstrating the contrast amongst Hadoop and spark.

Difference between Hadoop and Spark

RCHITECTURE
Spark Architecture incorporates taking after three principle

Data Storage: Spark utilizes HDFS document framework
for information stockpiling purposes. It works with any
Hadoop perfect information source including HDFS,

Programming interface: The API gives the application
developers to make Spark based applications utilizing a
standard API interface. Spark gives API to Scala, Java, and

Resource Management: Spark can be conveyed as a Stand-
alone server or it can be on a distributed computing

Figure 2 below shows
these components of Spark architecture model.

Figure 2. Spark Architecture

NTELLECTION TO DESIGNATE SPARK
Sparkle utilizes the idea of RDD which permits us to

y and persevere it according to the
prerequisites. This permits a massive increment in batch
processing job execution (up to ten to hundred times as
much as that of routine Map Reduce).

 International Journal of Innovative Research in Engineering & Management (IJIREM)
 ISSN: 2350-0557, Volume-3, Issue-5, September-2016

Copyright © 2016. Innovative Research Publications. All Rights Reserved 433

Start additionally permits us to reserve the data in memory,
which is valuable if there should arise an occurrence of
iterative algorithms, for example, those utilized as a part of
machine learning.
Conventional MapReduce and DAG engines are
problematic for these applications since they depend on
acyclic data stream: an application needs to keep running as
a progression of unmistakable jobs, each of which peruses
data from stable storage (e.g. a disseminated record
framework) and composes it back to stable storage. They
bring about noteworthy cost stacking the data on every
progression and composing it back to replicated storage.
Flash permits us to perform stream processing with
extensive information data and manage just a chunk of data
on the fly. This can likewise be utilized for online machine
learning, and is very fitting for use cases with a prerequisite
for continuous investigation which happens to be a
practically universal necessity in the business.
MapReduce is ineffective for multi-pass applications that
require low-latency data sharing over multiple parallel
operations. These applications are very basic in analytics,
and include:

 Iterative algorithms, including numerous machine
learning algorithms and graph algorithms like
PageRank.

 Interactive data mining, where a client might want
to load data into RAM over a bunch and question it
more than once.

 Streaming applications that keep up aggregate state
after some time.

2. IMPLEMENTATION

2.1 K-MEANS CLUSTERING
 K-Means is a simple learning algorithm for clustering
analysis. The goal of K-Means algorithm is to find the best
division of n entities in k groups, so that the total distance
between the group’s members and its corresponding
centroids, representative of the group, is minimized. The k-
means algorithm is used for partitioning where each
cluster’s centre is represented by the mean value of the
objects in the cluster. The Pseudo code is as following:
Step 1: Begin with n clusters, each containing one object
and we will number the clusters 1 through n.
Step 2: Compute the between-cluster distance D(r, s) as the
between-object distance of the two objects in r and s
respectively, r, s =1, 2, …, n. Let the square matrix D =
(D(r, s)). If the objects are represented by vectors, we can
use the Euclidean distance.
Step 3: Next, find the most similar pair of clusters r and s,
such that the distance, D(r, s), is minimum among all the
pair wise distances.
Step 4: Merge r and s to a new cluster t and compute the
between-cluster distance D(t, k) for any existing cluster k ≠
r, s . Once the distances are obtained, delete the rows and
columns corresponding to the old cluster r and s in the D
matrix, since r and s do not exist anymore. Then add a new
row and column in D corresponding to cluster t.
Step 5: Repeat Step 3 a total of n − 1 times until there is
only one cluster left.

3. COMPARISON

 Keeping in mind the end goal to arrive at a decision
about the useful correlation of Apache Spark and Map
Reduce, we performed a near examination utilizing these
systems on a dataset that permits us to perform bunching
utilizing the K-Means calculation.

3.1 DATASET DESCRIPTION
 The Data Set includes healthcare_Sample_datasets size
of 3.13 MB collected over the years, and includes
patientID, name and other values of the respective records.
A sample of the data records is shown as below: The data
record is demonstrated in the table1:

Table 1: Healthcare_sample_datasets

PatientID: int

Name: chararray

DOB: chararray

PhoneNumber: chararray

EmailAddress: chararray

SSN: chararray

Gender: chararray

Disease: chararray

weight: float

Sample Record

11
1

aa
1

12/10/19
50

123
4

aa1@xx.co
m

1
1

M
Diabet
es

7
8

11
2

aa
2

12/10/19
84

123
4

aa2@xx.co
m

1
1

F PCOS
6
7

3.2 PERFORMANCE ANALYSIS AND

DESCRIPTION
 Post working on the K-Means algorithm on the
described data set, we achieved the following results for
comparison (shown in the tables). To gain a varied
analysis, we considered 64MB, 3.13 MB with a single node
and 3.13MB with two nodes and monitored the
performance in terms of the time taken for clustering as per
our requirements using K-Means algorithm. The machines
used had a configuration as follows:
 4GB RAM
 Linux Ubuntu
 500 GB Hard Drive

The results clearly showed that the performance of Spark
turn out to be considerably higher in terms of time, where
each of the dataset size results in a decrease in the
processing time of up to three times as compared to that of
Map Reduce. Although there exists a minor fluctuation in
this result, this is due to the random nature of the K-Means
algorithm and does not affect the analysis to a large extent.

Implementing K-Means for Achievement Study between Apache Spark and Map Reduce

Copyright © 2016. Innovative Research Publications. All Rights Reserved 434

Table 2 Results for K-Means using Spark (MLib)

Dataset Size Nodes Time (s)
64 MB 1 18
3.13MB 1 149

Table 3. Results for K-Means using Map

Reduce (Mahout)

Dataset Size Nodes Time (s)
64MB 1 44
3.13 MB 1 291
3.13 MB 2 163

The performance of the spark and Map Reduce are
compared with the metrics used for the analysis are:
scheduling delay, speed up, energy consumption with
respect to the number of nodes in the cluster.

3.2.1 SCHEDULING DELAY: SPARK VS MAP

REDUCE
Figure 3 shows the result of scheduling delay with respect
to the spark and map reduce in the Hadoop cluster. The
spark is showing the good scheduling length compare to the
map reduce.

Figure 3. The result of scheduling delay with respect to
Spark and Map Reduce in the Hadoop Cluster

3.2.2 SPEED UP: SPARK VS MAP REDUCE
The speed up is the ratio of the sequential execution time to
the schedule length of the output schedule. Figure 4 shows
the result of speed up with respect to spark and Map
Reduce. The speed up of spark model is higher than the
other Map Reduce approaches, where its value is gradually
increasing with regard to the number of clusters.

Figure 4: Result of speed up with respect to Spark and

Map Reduce

3.2.3 ENERGY CONSUMPTION: SPARK VS MAP

REDUCE
 Figure 5 shows the result of energy consumption with
respect to the Spark and Map Reduce Model. The Spark
consumes less energy than Map Reduce. Its value gradually
increases in regards to the number of cluster resource.

Figure 5: Shows the results of energy consumption with

respect to the Spark and Map Reduce

4. CONCLUSION
 This research paper gives a review of both the systems
furthermore analyzes these on different parameters took
after by an execution investigation utilizing K-Means
calculation. Our outcomes for this examination demonstrate
that Spark is an extremely solid contender and would
without a doubt achieve a change by utilizing as a part of
memory preparing. Watching Spark's capacity to perform
group handling, gushing, and machine learning on the same
bunch and taking a gander at the present rate of reception
of Spark all through the business, Spark will be the true
system for countless cases including Big Data preparing.

 International Journal of Innovative Research in Engineering & Management (IJIREM)
 ISSN: 2350-0557, Volume-3, Issue-5, September-2016

Copyright © 2016. Innovative Research Publications. All Rights Reserved 435

REFERENCES

[1] Apache Hive. http://hadoop.apache.org/hive
5Scalaprogramming language. http://www.scala-lang.org.
[2] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.
Tomkins. Pig latin: a not-so-foreign language for data

[3] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U´ .
Erlingsson,P. K. Gunda, and J. Currey. DryadLINQ: A
system for general-purpose distributed data-parallel
computing using a high-level language. In OSDI ’08, San
Diego, CA, 2008.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107
113, 2008.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequential
building blocks. In EuroSys 2007, pages 59–72, 2007.

[6] B. Nitzberg and V. Lo. Distributed shared memory: a
survey of issues and algorithms. Computer, 24(8):52 –60,
Aug 1991.

[7] Spark Main Website

[8] Spark Examples

[9]Spark Summit 2014 Conference Presentation and Videos

[10]Spark on Databricks website

