
 International Journal of Innovative Research in Engineering & Management (IJIREM)
ISSN: 2350-0557, Volume-1, Issue-1, July-2014

1

Fast and Effective Searches of Personal Names in an
International Environment

Dr.Sandeep Gupta
Department. of CSE,

Noida Institute of Engg. Technology,
 Greator Noida, India

Arun Pratap Srivastava
Department. of CSE,

G.L.Bajaj Institute of Technology &
Management, Greator Noida, India

arun019@yahoo.com

Dr. Shashank Awasthi
Department. of CSE,

G.L.Bajaj Institute of Technology
& Management, Greator Noida,
 India

ABSTRACT
Fast and effective search of personal names in an international
environment uses concepts of approximate string matching and
applies them to special case of finding ‘close’ or ‘similar’ names,
to an input name, from a large database of names. Such Proper-
Name-Approximate matching finds applications in situations
where a user is unsure of how a person’s name is spelled, such as
in a telephone directory search system or a library search system
where a user wishes to search books on an author’s name.

In this Paper we examine this problem in two main aspects: How
to organize data efficiently, so as to obtain relevant results
quickly, and how to develop suitable search techniques which
would rank results suitably. We suggest four new data
organization techniques to replace the current standard technique,
Soundex, and we suggest refinements to the currently available
search techniques. We then assess the performance of the
developed techniques and compare them against the currently
available ones.

Keywords
Hash table, Editex, Q-grams, Soundex, Hindex

1. INTRODUCTION
Finding the occurrence of given input string from a very large
dataset is a fundamental problem in computer science. Simple
string matching is the process of identifying a string or substring
in a dataset (such as text) which is same as the input. It finds
applications in various fields such as text processing &
bioinformatics. Approximate string matching, however, involves
finding strings (and/or substrings) which may not be exactly same
as the input, but be ‘similar’ to the input string. A very frequently
used application of approximate string matching is an automatic
spelling suggestion program where a user is presented with
‘closely similar’ words to the erroneous word. Other such
applications include studying gene mutations, identifying
subsequences in data, virus & intrusion detection, file comparison,
optical character recognition, etc. There are two important issues,
which are to be considered while developing such system: Speed
of result retrieval and Precision of results. The question regarding
speed is largely one of data organization. If the dataset is suitably
organized it would be easier to eliminate totally irrelevant results
and retrieve only those results which are ‘good’ matches. Of
course data organization also influences the ‘recall’ of the result
set. This means that depending upon the selection scheme used

to eliminate irrelevant results, some of the ‘relevant’ results
might be lost. Since ‘recall’ is defined as the ratio of (a)
number of relevant results retrieved to (b) the total number
of relevant results; results missed out due to the selection
scheme adversely affect ‘recall’. We present here six different
data organization schemes which were explored. After such a
limited set is considered we need to identify among this set, which
are the results, the user would ‘approve’ as a ‘similar sounding
match’. The ’precision’ of the system could then be defined as the
ratio between (a) common number of matches obtained between to
sets: the one which the user deems as ‘approved’ and the one
produced by the system and (b) the total number of results
retrieved. Thus, we need a system which has a high ‘precision’
value. We present here seven such search techniques which would
provide fairly precise results. Following are the different methods
by which the database could be formed:

 No Rep and order
 No rep no order
 Rep with order
 Rep no order
 Soundex
 Q-grams

The first four methods are somewhat similar-since the all have the
same basic concept of removing the vowels in a given name unless
the name starts with a vowel. The point where they differ is, while
forming groups in some methods either repetitions or the order in
which the consonants occur or both are considered. Once the
database is formed one of the following search methods is used to
retrieve the set of possible answers

 Edit Distance
 Edit Distance Tapered
 Editex
 Editex Tapered
 Ipadist
 Ipadist Tapered
 Q-gram

1.1 Data structure
 Hash table organization is used to store the names.
 Hash table has the following organization

Key1 => Value 1

Fast and Effective Searches of Personal Names in an International Environment

2

Key2 => Value 2a,Value 2b, …

 So, for each name in the text file some processing is done
and for a key generated the corresponding name is stored as
one of the value.

1.2 Design
The following diagram represents the flow of control adopted in
the retrieval of the answers required.

Figure 1: Flow of control

2. DATABASE ORGANIZATION

2.1 Database Creation
2.1.1 No repetition and order important
Step 1: All the vowels are removed except if at occurs at

position 1 in the word.
Step 2: All the double occurrences in the word so formed are

removed.

This method takes care of spelling mistakes.

2.1.2 No repetition and order not important
Step 1: All the vowels are removed except if at occurs at position

1 in the word.
Step 2: All the double occurrences in the word so formed are

removed.
Step 3: The ordering of the intermediate key, formed from step 2

is removed by arranging the letters in ASCII order.

This method takes care of spelling mistakes and increases the
scope of search

2.1.3 Repetition allowed and order important
Step 1: All the vowels are removed except if at occurs at position
1 in the word. This is the only step required to obtain the key.

This method produces specific results.

2.1.4 Repetition allowed but order not important
Step 1: All the vowels are removed except if at occurs at position

1 in the word.
Step 2: The ordering of the intermediate key so formed from step 1
is removed by arranging the letters in ASCII order

This method is slightly more scope of search than the previous
method since the ordering is not considered.

2.1.5 Soundex
Soundex is a phonetic algorithm for indexing names by their
sound. The basic aim is that the names with the same
pronunciation to be processed to a same string so that matching
can occur despite minor differences in spelling.

 The method relies on generating a code for each word.
 The Soundex code for a name consists of a letter followed by

numbers: the letter is the first letter of the name, and the
numbers contain information about the remaining consonants.
Similar sounding consonants share the same number

The exact algorithm is as follows:

1. Retain the first letter of the string
2. Remove all occurrences of the following letters, unless it is the

first letter: a, e, i, o, y, w, h, y.
3. Assign numbers to the remaining letters (after the first) as

follows:

Soundex Code: 0 1 2 3 4 5 6

Letters: aeiouhw bpfv cgjkqsxz dt l mn r

Figure 2 : Soundex Codes

4. If two or more letters with the same number were adjacent in
the original name (before step 1), or adjacent except for any
intervening h and w then omit all but the first.

2.1.6 Q-Grams
 This method aims at creating multiple keys each of length “3”

from a given single name and then placing the name in each of
the keys created.

 The method’s underlying principle is that all the letters are
important.

 Here, for given name, three consecutive letters are taken at a
time (also called tri-gram) – starting from the first letter till the
last letter is a part of a tri-gram.

3. SEARCHING TECHNIQUES

3.1 Searching Methods
The next step in system design is implementation of
searching methods. Once the database is created with any of
the six data organization methods detailed above, one of the
following search methods is used to search the user input
against the database created

3.1.1. Edit Distance
3.1.2. Editex
3.1.3. Q-Grams
3.1.4. Edit Distance Tapered
3.1.5. Editex Tapered
3.1.6. Ipadist
3.1.7. IpaDist Tapered
3.1.8. Hindex

3.1.1 Edit Distance
Edit Distance also known as Levenshtein distance (LD) is a
measure of the similarity between two strings, which we will refer
to as the source string (s) and the target string (t).The distance is

 International Journal of Innovative Research in Engineering & Management (IJIREM)
ISSN: 2350-0557, Volume-1, Issue-1, July-2014

3

the number of deletions, insertions, or substitutions required to
transform source string into target string.

For example
 If s is "test" and t is "tent", then LD(s,t) = 1, because one

substitution (change "s" to "n") is sufficient to transform s into
t.

 If s is "test" and t is "test", then LD(s,t) = 0, because no
transformations are needed. The strings are already identical.

The greater the Levenshtein distance, the more different the
strings are.

The Algorithm

edit (0,0)=0, edit (i,0)=i, edit (0,j)=j
edit (i,j)=m in[edit(i-1,j) +1, edit(i,j-1) + 1,
edit(i-1,j-1) + r (s i ,t j)]

Figure 3: Recurrence relation for minimal edit distance

3.1.2 Editex
Editex is a phonetic distance measure that combines the properties
of edit distances with the letter-grouping strategy used by Soundex
and Phonix.
Editex is defined by the edit distance recurrence relation of Fig 4
with a redefined function r(a, b) and an additional function d(a, b).

edit (0,0)=0
edit (i,0)=edit(i-1,0)+d(s i-1 ,s i)
edit (0,j)=edit(0,j-1)+d(t j-1 ,t j)
edit(i,j)=min[edit(i-1,j)+d(s i-1,s i),edit(i,j-1)+d(t j-1 ,t j), edit(i-
1,j-1) + r (s i ,t j)]

Figure 4: Recurrence relation for minimal editex

The function r(a, b) returns 0 if a and b are identical, 1 if a and b
are both occur n the same group, and 2 otherwise. The groups are
listed below:

Editex Code: 0 1 2 3 4 5 6 7 8 9
Letters: aeiouy bp ckq dt lr mn gj fpv sxz csz

Figure 5: Editex code groupings

The function d(a, b) is identical to r(a, b)—thus allowing pairs of
the same letter to correspond to single occurrences of that letter--
except that if a is h or w (letters that are often silent) and a = b
then d(a, b) is 1.

3.1.3 Q-Grams
Q-Gram method for searching is almost similar to the edit
distance method except that the comparisons in q-grams are made
in groups rather than one letter at a time as in the case of edit
distance.

 Q-grams are string distance measures based on q gram counts,
where a q-gram of string s is any sub string of s of some fixed
length q.

 A simple such measure is to choose q and count the number of
q-grams two strings have in common.

 However, simply counting q-grams does not allow for length
differences; for example, Fred has exactly as many q- grams in
common with itself as it does with Frederick. So to address the

problem, an q-gram distance which for strings without
repeated q-grams (q-gram repeats are rare in names) can be

defined as
|Gs| + |Gt| - 2|Gs�Gt|

Where,

Gs: Set of q-grams in string s

Gt: Set of q-grams in string t

Gs�Gt: Set of q-grams common to Gs & Gt

Although this formula gives us a q-gram distance it does not tell
us a percent match between two strings.

3.1.4 Edit Distance Tapered
Tapering is a refinement to the edit distance technique.

 It is based on the human factors property: “Differences at the
start of a pronunciation can be more significant than differences
at the end”.

 A tapered edit distance of particular interest is one in which the
maximum penalty for replacement or deletion at the start of the
string just exceeds the minimum penalty for replacement or
deletion at the end of the string.

 Such an edit distance, in effect, breaks two ties : two errors
always attract a higher penalty than one, regardless of position,
but strings with one error are ranked according to the position
at which the error occurs.

3.1.5 Editex Tapered
 The same tapering scheme is applied to the Editex method.
 The values obtained are nearly three times those obtained edit

distance tapered algorithm.

3.1.6 IpaDist
 IpaDist is a phonometric search method developed by Justin

Zobel (RMIT, Australia) and Philip Dart (University of
Melbourne, Australia)

 IPA is the International Phonetic Algorithm. The strings are
converted into phonetic codes as defined by the IPA.

 The codes, called phonemes are then compared by assigning
distance values between different phoneme pairs. An editex like
algorithm is used.

 3.1.7 IpaDist Tapered
 The tapering scheme when applied to IpaDist gives us this

modified method.
 This method, however, seems to give us inaccurate results.

3.1.8 Hindex
 Transliteration refers to the conversion of a string from one

language to another. (E.g. English to Hindi)
 It is important to capture the pronunciations in the native

language of the name
 To find the Hindex distance between s1 and s2 we first convert

the consonant/consonant groups of both the strings into their
Unicode Hindi representation based on Harvard-Kyoto
transliteration scheme, a standard ‘English to Hindi
Transliteration scheme’.

Fast and Effective Searches of Personal Names in an International Environment

4

 The character groupings are as follows:

 We apply the Editex algorithm by but use the above character

groupings rather than the standard ones.
 We replace the all instances of the ‘d’ function by the ‘r’

function.
 His modification of Editex is termed:Hindex

3.2 Gram analysis
 The method takes into account the various points at which

possible errors occur during pronunciation to representation.
 Variants of the same name can be identified by suitable analysis

to find 2-grams or 3-grams which could be possibly misspelled
or confused for the same pronunciation e. g

aa a

ph f

sh s

th t

ky ki ………..

ci si

ava av

aks ax

etc,

 This means that the initially occurring n-gram can be replaced
safely without altering the pronunciation, much.

 Any search method is used after the n-gram analysis function is
applied when this particular search method altering technique is
chosen.

4. METHODS FOR PERFORMANCE
ASSESSMENT

A test bed of 28 queries was created. A spelling mistake was
purposely introduced in these queries. For each such test query the
entire database was manually scanned and the results deemed
‘relevant’ for this query were noted. Performance metrics for each

of the 28 queries were obtained, and the average of these for a
particular hash organization-search scheme combination was
calculated. The metrics used were:

4.1 Recall
It is the ratio of the relevant results retrieved to the total number
of relevant results (in a pre-defined result set).
It is a measure of ‘false negatives’, i.e. it is also an indicator of
which results were marked as ‘irrelevant’ but were supposed to be
marked as ‘relevant’ by the system.

Recall =|{relevant doc.}∩|{retrieved doc.}

|{relevant doc.}|

4.2 Precision
 It is the ratio of the ‘relevant results’ (from the retrieved result

set) to the total number. of results retrieved.
 It is a measure of ‘false positives’, i.e. it is also an indicator of

which results were marked as ‘relevant’ but were supposed to
be marked as ‘irrelevant’ by the system.

Precision =|{relevant doc.}∩|{retrieved doc.}

|{relevant doc.}|

4.3 Weighted Recall
Since some results were deemed to be of more importance than
others, a weighted recall scheme was considered:

 Each ‘relevant result’ set was divided into subsets. The no. of
subsets for each query was decided individually based on the
need to grade some results more extremely important than
other subsets.

 For 4 subsets, the subset weights were, Set 1: 40%, Set 2: 30%,
Set 3: 20%, Set 4:10%

 For 3 subsets, Set 1: 50%, Set 2: 30%, Set 3: 20%
 For 2 subsets, Set 1: 70%, Set 2: 30%

Such a weighted-scheme of assessment was considered more
reliable as a performance metric than simple recall.

4.4 Time analysis
The time taken to execute a query is of utmost importance to
measure the effectiveness of a data organization scheme. For each
combination of ‘data-organization’ and ‘search scheme used’ the
average time to execute a query was calculated by obtaining the
run-times of 28 (different length) queries and then averaging the
values obtained.

5. CONCLUSION
From the calculation of the weighted recall values, it is seen that
the data organization techniques have a large role to play in the
‘quality’ of results obtained. The ‘no-rep-order’ data organization
scheme provides the best recall values for all the search schemes.
This implies that the order of the consonants in the names has an
important effect on the pronunciation. Also if the same consonant
occurs consecutively, the extra occurrence(s) can be safely
overlooked. This scheme also has an optimal words/bin size,
which is better than Soundex or Phonix, which are the generally
used methods for grouping similar sounding names. Thus we
suggest the ‘no-rep-order’ as a newer and better data organization
scheme.

 International Journal of Innovative Research in Engineering & Management (IJIREM)
ISSN: 2350-0557, Volume-1, Issue-1, July-2014

5

REFERENCES
[1] Finkel, Jenny Rose, Grenager, Trond and Manning,

Christopher. 2005. Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling.
Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics ACL 2005), pp. 363-370.

[2] Malouf, Robert. 2002 Markov models for language
independent named entity recognition. In Proceedings of
CoNLL-2002 Taipei, Taiwan, pages 591-599.

[3] Justin Zobel and Philip Dart “Phonetic String matching:
lessons from Information Retrieval”, SIGIR'96,Zurich ,pp.
105-110, 1996.

[4] Pattern Matching Algorithms, Alberto Apostolico & Zvi Galil,
Oxford University Press, UK, 1997.

[5] R. Baeza-Yates and G. Navarro. Fast Approximate String
Matching in a Dictionary. Proc. 1998.

[6] V. I. Levenshtein, Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady 10 (1966)

[7] Zobel, J. and Dart, P. [1995]. Finding approximate matches in
large lexicons.Software-Practice and Experience, 25(3):331-
345.

[8] Zobel, J. and Dart, P. [1996]. Fnetik: An integrated system for
phonetic matching. Technical Report 96-6, Department of
Computer Science, RMIT.

