Volume- 2
Issue- 6
Year- 2015
Article Tools: Print the Abstract | Indexing metadata | How to cite item | Email this article | Post a Comment
Dr. Pascoal José Gaspar Júnior , MsC. Camila de Melo Silva , Dr. Félix Gonçalves de Siqueira , Nilo Sobreira Silva, Dra. Fernanda Silva Torres Dr. Daniel Moreira dos Santos, MsC. Lucas Vieira de Faria , MsC. Géssyca Paula de Alvarenga Soares , Ana Paula Resende Pinto , Juraci Lourenço Teixeira , Dr. Sérgio Marangoni, Dra. Maria Elena de Lima
Screening strategies for the production of fungal holocellulases aims at obtaining enzymes that hydrolyze the lignocellulosic material from plant biomass, increasing the viability of cellulosic ethanol production. The present study evaluates the potential of Penicillium simplicissimum and Penicillium corylophilum to produce holocellulases from commercial and lignocellulosic substrates. These fungi were grown in a supplementary medium with 1.0% lignocellulosic substrate, at pH 7.0, at 108 spores.mL-1 . The supernatant was filtered and the enzyme activities were evaluated. P. simplicissimum xylanase activity on linseed substrate, after 72 and 120 h (3.8 and 3.9 IU.mL-1 , respectively), showed the highest values among all the enzymes tested. The lyophilized crude extract, after 72 h of incubation, was submitted to two chromatographic steps (gel filtration and anion exchange). A third chromatographic step using a reversed phase column, followed by mass spectrometry analyses, showed a pool of lowmolecular-weight xylanases (18831 Da). The specific xylanase activity increased considerably after anionexchange chromatography purification, from 3x10-3 atv.mg-1 to 19.2 atv.mg-1 . Maximum enzyme activity was observed with 0.5% xylan and 0.04% xylose as carbon sources. Optimum pH and temperature for xylanase activity were 4.0 and 50°C, respectively. In conclusion, the fungal strains Penicillium simplicissimum and Penicillium corylophilum are potential sources for the production of different enzymes in several lignocellulosic substrates derived from oil plants. Moreover, we purified and partially characterized a pool of xylanase enzymes from P. simplicissimum that show promising industrial application.
[1] Adler. E. 1977. Lignin chemistry: Past, Present and Future. Wood Science Technol. 11(Jun. 1976), 169-218. DOI= http://dx. doi.org/10.1007/BF00365615.
[2] Aman, P. 1993. Composition and structure of cell wall polysaccharides in forages. In: J. Ralph (ed), Forage Cell Wall Structure and Digestibility, Madison, pp 183-200 (Oct, 1991).
[3] Badhan, A.K., Chadha, B.S., Kaur, J., Sonia, K.G., Saini, H.S., Bhat, M.K. 2007. Role of transglycosylation products in the expression of multiple Xylanases in Myceliophthora sp. IMI 387099. Current Microbiol. 54, (Oct, 2006) 405-409. DOI= http:// dx.doi.org/0.1007/s00284-006-0204-5
[4] Bakri, Y., Jacques, P. and Thonart, P. 2003. Xylanase production by Penicillium canescens 10-10c in solid-state fermentation. Appl. Biochem. and Biotechnol., 105, (Mar. 2003) 108. DOI= http://dx.doi.org/10.1007/978-1-4612-0057-4_61.
[5] Beg, Q.K., Kappor, M., Mahajan, L. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. and Biotechnol., 56, (Jun.2001) 326-338. DOI= http:// dx.doi.org/10.1007/s002530100704.
[6] Berlin, A., Maximenko, V., Gilkes, N., Saddler, J. 2007. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeneng., 97, (Oct.2006) 287-296. DOI= http://dx. doi.org/10.1002/bit.21238.
[7] Bhat, M.K. and Hazlewood, G.P. 2001. Enzymology and Other Characteristics of Cellulases and Xylanases. In: Enzymes in Farm Animal Nutrition. Bedford MR and Partridge CC (eds.), ISBN 0 85199 393 1. CAB International, Wallingford, UK.
[8] Biely, P., Markovic, O. and Mislovicova, D. 1985. Sensitive detection of endo-1,4-betaglucanases and endo-1,4-beta-xylanasesin gels. Anal. Biochem., 144, (Jul. 1984) 147-151. DOI= http://dx. doi.org/10.1016/0003-2697(85)90096-X.
[9] Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, (Jan.1976) 248-254. DOI= http://dx.doi.org/10.1016/0003-2697(76)90527-3.
[10] Chang, V.S. and Holtzapple, M.T. 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol., 84, (Mar. 2000) 35-37. DOI= http://dx.doi.org/ 10.1385/ABAB:84-86:1-9:5.
[11] Clark, J.H., Deswarte, F.E.I. and Farmer, T.J. 2009. The integration of green chemistry into future biorefineries. Biofpr., 3, (Oct. 2008) 72-90. DOI= http://dx.doi.org/10.1002/bbb.119.
[12] Collins, T., Gerday, C. and Feller, G. 2005. Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol. Rev. 29, (Jun. 2004) 3–23. DOI= http://dx.doi.org/ 10.1016/j.femsre.2004.06.005.
[13] Damaso, M.C.T., Almeida, M.S. and Kurtenbach, E. 2003. Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl. Environ. Microbiol., 69, (Jul. 2003) 6064-6072. DOI= http://dx.doi.org/ 10.1128/AEM.69.10.6064-6072.2003.
[14] Dische, Z.G. 1962. General color reactions. In: Whistler, R.L., Wolfram, M.L. Carbohydrate Chemistry. New York, Academic Press, p.477-512.
[15] Dragone, D., Fernandes, B., Vicente, A. A., Teixeira, J.A. 2010. Third generation biofuels from microalgae. Curr Res, Technol. Educ. Top. in Appl. Microbiol. and Microbial Biotechnol., A. Mendez-Vilas (Ed).
[16] Duarte, G.C., Moreira, L.R.S., Gómez-Mendoza, D.P., Siqueira, F.G., Batista, L.R., Amaral, L.I.V., Ricart, C.A.O., Ferreira Filho, E.X. 2012. Use of residual biomass from the Textile Industry as carbon source for production of a lowmolecular-weight Xylanase from Aspergillus oryzae. Appl. Sci., 2, (Oct. 2012) 754-772. DOI= http://dx.doi.org/ 10.3390/app2040754.
[17] Frigon, J.C., Mehta, P. and Guiot, S.R. 2012. Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy, 36, (Mar. 2011) 1-11. DOI= http://dx.doi. org/10.1016/j.biombioe.2011.02.013.
[18] Guo, Y., Wang, S.Z., Xu, D.H., Gong, Y.M., Ma, H.H., Tang, X.Y. 2010. Review of catalytic supercritical water gasification for hydrogen production from biomass. Renewable and Sustain Energy Rev., 14, (Aug. 2009) 334-343. DOI= http:// dx.doi.org/10.1016/j.rser.2009.08.012.
[19] Hinnman, R.L. 1994. The changing face of the fermentation industry. Chem. Technol., 24, 45-48.
[20] IEA. 2008. Commercial investments in 2 nd generation plants. In: Sims R. (ed), From 1 st to second generation Biofuel Technologies: An Overview of Current Industry and Rand D activities, Italy, (Nov. 2008) pp 62-82.
[21] Iembo, I., Azevedo, M.O., Bloch Junior, C., Ferreira Filho, E.X. 2006. Purification and partial characterization οf a new βxylosidase from Humicola grisea var. thermoidea. World J. Microbiol. Biotechnol., 22, (Set. 2005) 475-479. DOI= http://dx. doi.org/10.1007/s11274-005-9059-3
[22] Kleinert, M. and Barth, T. 2008. Towards a Lignincellulosic Biorefinery: direct one-step conversion of lignin to HydrogenEnriched biofuel. Energy and Fuels, 22, (Jan. 2008) 1371-1379. DOI= http://dx.doi.org/10.1021/ef700631w
[23] Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J.S., Karl-Erik, E.L. 2000. Relationships between activities of xylanases and xylan structures. Enzyme Microbiol. Technol., 27, (Feb. 2000) 89– 94. DOI= http://dx.doi.org/10.1016/S0141-0229(00)00190-3.
[24] Liao, H., Sun, S., Wang, P., Bi, W., Tan, S., Wei, Z., Mei, X., Liu, D., Raza, W., Shen, Q., Xu, Y. 2014. A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity. J. of Industrial Microbiol. & Biotechnol., 41, (Ju. 2012) 7, pp 1071-1083. http://dx.doi.org/10.1007/s10295- 014-1453-0.
[25] Mccready, P., Mccomb, E.A. 1952. Extraction and determination of total pectic materials fruit. Anal. Chem., 24, (Dec. 1952) 1586-1588. DOI= http://dx.doi.org/ 10.1021/ac60072a033.
[26] Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31, (Mar. 1959) 426-429. DOI= http://dx.doi.org/10.1021/ac60147a030.
[27] Monlau, F., Barakat, A., Trably Dumas, C., Steyer, J.P., Carrere, H. 2013. Lignocellulosic materials into Biohydrogen and Biomethane: impact of structural features and pretreatment. Crit. Rev. in Environ. Science and Technol., 46, (Oct. 2011) 12217- 12225. DOI= http://dx.doi.org/10.1080/10643389.2011.604258.
[28] Monte, J. R., Carvalho, W., Milagres, A.M.F. 2010. Use of a mixture of thermophilic enzymes produced by the fungus Thermoascus aurantiacus to enhance the enzymatic hydrolysis of the sugarcane bagasse cellulose. Am. J. Agric. Biol. Science, 5, (Oct. 2010) 468-476. DOI= http://dx.doi.org/ 10.3844/ajabssp.2010.468.476.
[29] Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresourc. Technol., 96, (Sep. 2004) 673-686. DOI= http://dx. doi.org/10.1016/j.biortech.2004.06.025.
[30] Murthy, P. and Naidu, M. 2010. Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess. Technol. 5, (Feb. 2009) 657–664. DOI= http:// dx.doi.org/10.1007/s11947-010-0331-7.
[31] Nigam, P.S. and Singh, A. 2010. Production of liquid biofuels from renewable resources. Prog. in Energy and Combust. Sci. 37, (May.2010) 52-68. DOI= http://dx.doi.org/ 10.1016/j.pecs.2010.01.003.
[32] Ntaikou, I., Gavala, H.N., Kornaros, M., Lyberatos, G. 2007. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int. J. Hydrogen. Energy., 33, (May. 2010) 1153-1163. DOI= http://dx.doi.org/ 10.1016/j.ijhydene.2007.10.053.
[33] Ohman, M., Boman, C., Hedman, H., Eklund, R. 2006. Residential combustion performance of pelletized hydrolysis residue from lignocellulosic ethanol production. Energy and Fuels, 20, (Jan. 2006) 1298-1304. DOI= http://dx.doi.org/ 10.1021/ef058030g.
[34] Pakarinen, A., Zhang, J., Brock, T., Maijala, P., Viikari, L. 2012. Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Bioresourc. Technol., 107, (Dec. 2011) 275-281. DOI= http://dx.doi.org/ 10.1016/j.biortech.2011.12.101.
[35] Pandya, J.J. and Gupte, A. 2012. Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Bioprocess Biosyst. Eng., 35, (Jan. 2012) 769-779. DOI= http://dx.doi.org/10.1007/s00449-011-0657-1.
[36] Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S. 2005. Xylanases from fungi: properties and industrial applications. Appl. MicrobiolBiotechnol., 67, (Jan. 2005) 577–591. DOI= http://dx.doi.org/ 10.1007/s00253-005-1904-7.
[37] Prakasham, R.S., Subba Rao C.H., Sreenivas Rao, R., Rajesham, S., Sarma, P.N. 2005. Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology. Appl. Biochem. Biotechnol., 120, (Aug. 2004) 133–144. DOI= http://dx.doi.org/10.1385/ABAB:120:2:133.
[38] Puls, J. and Poutanen, K. 1989. Mechanisms of enzymatic hydrolysis of hemicelluloses xylans and procedures for determination of the enzyme activities involved. In: Ericksson KEE, Ander P (eds) Proceedings of the 3rd International Conference on Biotechnology in the Pulp and Paper Industry. STFI, Stockholm, pp 93–95, (Jun 1989).
[39] Reilly, P.J. 1981. Xylanases, structure and function. In: Hollaender A (ed) Trends in the biology of fermentation for fuels and chemicals. Plenum, New York, pp 111–129 (Jul. 1982).
[40] Roy, S., Dutta, T., Sarkar, T.S. and Ghosh, S. 2013. Novel xylanases fromSimplicillium obclavatum MTCC 9604: comparative analysis of production, purification and characterization of enzyme from submerged and solid state fermentation. SpringerPlus, 2, (Aug. 2013) 382. http://dx.doi.org/ 10.1186/2193-1801-2-382
[41] Salmen, L. and Olsson, M. 1998. Interaction between hemicelluloses, lignin and cellulose: Structure property relationships. J. Pulp and Paper Sci., 24, 99-103. DOI= http://dx. doi.org/35400007511992.0050.
[42] Siqueira, F.G., Siqueira, E.G., Jaramillo, P.M.D., Silveira, M.H.L., Andreaus, J., Couto, F.A., Batista, L.R., Filho, E.X.F. 2010. The potential of agro-industrial residues for production of holocellulase from filamentous fungi. Int. Biodeterior. Biodegrad., 64, (Nov. 2009) 20–26. DOI= http://dx.doi.org/ 10.1016/j.ibiod.2009.10.002.
[43] Subramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol., 22, (Sep.2008) 33–64. DOI= http://dx.doi.org/10.1080/07388550290789450.
[44] Taherzadeh, M.J. and Karimi, K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Intern. J. Mol. Sci., 9, (Sep. 2008) 1621-1651. DOI= http://dx.doi.org/10.3390/ijms9091621.
[45] Tong, X., Smith, L.H. and McCarthy, P.L. 1990. Methane fermentation of selected lignocellulosic materials. Biomass, 21, (Jun. 1989) 239. DOI= http://dx.doi.org/10.1016/0144- 4565(90)90075-U.
[46] Van Soest, P.J. 1967. Development of a comprehensive system of feed analyses and its application to forages. J. Anim. Sci., 26,119-28. DOI= http://dx.doi.org/10.2134/jas1967.261119x.
[47] Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W. 2010. Lignin Biosynthesis and Structure. Plant Physiol., 153, (Jul. 2010) 895-905. DOI= http://dx.doi.org/10.1104.
[48] Watanabe, M., Inomata, H., Osada, M., Sato, T., Adschiri, T., Arai, K. 2003. Catalytic effects of NaOH and ZrO2 for partial oxidative gasification of n-hexadecane and lignin in supercritical water. Fuel, 82, (Oct. 2002) 545-552. DOI= http:// dx.doi.org/10.1016/S0016-2361(02)00320-4.
[49] Yuan, J.S., Tiller, K.H., Al-Ahmad, H., Stewart, N.R., Stewart, Jr. C.N. 2008. Plants to power: bioenergy to fuel the future. Trends in Plant Sci., 13, (Jul.2008) 421-429. DOI= http:// dx.doi.org/10.1016/j.tplants.2008.06.001.
Departamento de BioquÃmica, Universidade de Campinas, e Departamento de Biologia, Centro Universitário de Formiga, Formiga, MG, Brazil;
No. of Downloads: 6 | No. of Views: 978
Abdul-Aleam Ahmed Al-Qadhi , Dr.M.R. Janardhana .
January 2016 - Vol 3, Issue 1
Pranjit Kumar Sarma, Khagendra Kumar Nath, Md. E.A Huda, Bankim Baruah, Kiranmay Sarmah, Kalyanjit Sarma, Bibhab Kr. Talukdar.
January 2016 - Vol 3, Issue 1
Eng. Tonui Wesley , Prof. Crispus Ndiema , Emmanuel Kinyor Mutai .
November 2015 - Vol 2, Issue 6