Volume- 3
Issue- 3
Year- 2016
Article Tools: Print the Abstract | Indexing metadata | How to cite item | Email this article | Post a Comment
Hossein. Atashi , Neda. Poudineh, Amin. Ein Beigi
The Fischer-Tropsch synthesis is the collection of several reactions which are used to produce hydrocarbon products from synthesis gas. This method is able to produce more than 70 types of products. The selectivity models of the products such as: diesel, gasoline, methane and C21+ in the FischerTropsch synthesis over Fe-Mn catalyst were obtained while have been discussed less about the selectivity models in the references. Neural networks and response surface method were used to determine the effect of operating parameters such as: temperature, pressure and H2/CO ratio and space velocity on the selectivity of products. Operating parameters were varied as follow: reaction temperature 523-573 K, reaction pressure 1.5-3 Mpa and H2/CO ratio 0.67-2. The highest influence related to temperature and H2/CO ratio parameters and the lowest was pressure on the selectivity of productssuch that has been removed from some of the models. In addition, the interaction between temperature and H2/CO ratio was interaction parameter. The results showed that the values predicted by the neural network could satisfy the experimental data, so use of neural network to predict the selectivity values in Fischer-Tropsch synthesisis an effective method.
[1] Dry ME. 2002. The Fischer–Tropsch process: 1950–2000. Catal Today. 71, 227-241. DOI= doi: 10.1016/S0920 5861(01)00453-9.
[2] Campos, A., Lohitharn, N., Roy, A., et al. 2010. An activity and XANES study of Mn-promoted, Fe-based Fischer– Tropsch catalysts. Appl Catal A: G. 375, 12-16. DOI= doi:10.1016/j.apcata.2009.11.015.
[3] Hoon, Yanga, J., Gul Hurc, Y., Hyun Chuna, D., et al. 2013. Hydrodynamic effect of oxygenated byproduct during Fischer–Tropsch synthesis in slurry bubble column. Chem Eng Proc 66: 27-35. DOI=doi:10.1016/j.cep.2013.01.007.
[4] van Vliet Oscar, P.R, Faaij André, P.C., Turkenburg Wim C. 2009. Fischer–Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Convers Manage. 50, 855–876. DOI=doi:10.1016/j.enconman.2009.01.008.
[5] Schulz, H., 1999. Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A: G. 186, 3-12.DOI= doi: 10.1016/S0926-860X (99)00160-X.
[6] Dry, ME., Hoogendoorn, JC. 1982. Hydrogenation of Carbon Monoxide Technology of the Fischer-Tropsch Process. Catal Rev - Sci Eng. 23, 265-278. DOI= 10.1080/03602458108068078.
[7] Miroliaei, A.R., Shahraki, F., Atashi, H., et al. 2012 Comparison of CFD results and experimental data in a fixed bed Fischer–Tropsch synthesis reactor. J Ind Eng Chem. 18, 1912-1920. DOI=doi:10.1016/j.jiec.2012.05.003.
[8] Fazlollahi, F., Sarkari, M., Zare, A., et al. 2012.Development of a kinetic model for Fischer–Tropsch synthesis over Co/Ni/Al2O3 catalyst. J Ind Eng Chem, 18, 1223-1232. DOI= doi:10.1016/j.jiec.2011.10.011.
[9] Geerlings, J.J.C., Wilson, J.H., Kramer G.J, et al. 1999. Fischer–Tropsch technology — from active site to Commercial process. Appl Catal A. 186, 27-40. DOI= Doi: 10.1016/S0926-860X (99)00162-3.
[10] Dry, M.E. 1996. Practical and theoretical aspects of the Catalytic Fischer-Tropsch process. Appl Catal A. 138, 319- 344. DOI= doi: 10.1016/0926-860X (95)00306-1
[11] Park, N., Kim, J.R, Y Yoo, et al. 2014. Modeling of a Pilot-scale fixed-bed reactor for iron-based Fischer–Tropsch synthesis: Two-dimensional approach for optimal tube diameter. Fuel, 122, 229-235. DOI=doi:10.1016/j.fuel.2014.01.044.
[12] Woo K.J., H Kang S., Kim S.M, and et al. 2010. Performance of a slurry bubble column reactor for Fischer– Tropsch synthesis: Determination of optimum condition. Fuel Proc Tech. 91, 434-439. DOI= doi:10.1016/j.fuproc.2009.04.021.
[13] Mirzaei, A.A., Sarani, R., Azizi, H.R et al. 2015.Kinetics modeling of Fischer–Tropsch synthesis on the unsupported Fe-Co-Ni (ternary) catalyst prepared using co-precipitation procedure. Fuel. 140, 701-710. DOI=doi:10.1016/j.fuel.2014.09.093.
[14] Mirzaei, A.A., Shirzadi, B., Atashi, H., et al. 2012. Modeling and operating conditions optimization of Fischer– Tropsch synthesis in a fixed-bed reactor. J Ind Eng Chem. 18, 1515-1521. DOI= doi:10.1016/j.jiec.2012.02.013.
[15] Jothimurugesan, K.J., G Goodwin, J.r., et al. 2000 Development of Fe Fischer–Tropsch catalysts for slurry bubble column reactors. Catal Today. 58, 335-344. DOI= doi: 10.1016/S0920-5861(00)00266-2.
[16] Lox ES, Marin GB, de Graeve E, et al. 1988 Characterization of a promoted precipitated iron catalyst for Fischer-Tropsch synthesis. App Catal A. 40, 197 218.DOI= doi: 10.1016/S0166-9834(00)80438-8.
[17] Prakash A. 1994. On the effects of syngas composition and water-gas-shift reaction rate on FT synthesis over IRON based catalyst in a slurry reactor. Chem Eng. Commun. 128, 143-158. DOI=10.1080/00986449408936242.
[18] Zimmerman, W.H., Ph.D. Thesis, TAMU, America, 1990.
[19] van der Laan, G.P., Beenackers, A.A.C.M. 1999.Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review. Catal Rev - Sci Eng. 41, 255-318.
[20] Nakhaei Pour, A., Kamali Shahri, M., Zamani, Y., et al. 2008. Deactivation studies of bifunctional Fe-HZSM5 catalyst in Fischer-Tropsch process. J Nat Gas Chem. 17, 242- 248. DOI= doi: 10.1016/S1003-9953(08)60058-4
[21] Nakhaei Pour, A., Zamani, Y., Tavasoli, A., et al. 2008. Study on products distribution of iron and iron–zeolite catalysts in Fischer–Tropsch synthesis. Fuel. 87, 2004-2012. DOI= doi:10.1016/j.fuel.2007.10.014.
[22] Nakhaei Pour, A., Kamali Shahri, M., Bozorgzadeh,H.R, et al. 2008. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer– Tropsch synthesis. Appl Catal A, 348, 201-208. DOI= doi:10.1016/j.apcata.2008.06.045.
[23] Li, S., Li, A., Krishnamoorthy, S., et al. 2001. Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of IronBased Fischer–Tropsch Synthesis Catalysts. Catal. Letters, 77, 197-205.
[24] Yang, J., Sun, Y., Tang, Y., et al. 2006. Effect of magnesium promoter on iron-based catalyst for Fischer– Tropsch synthesis. J Mol Catal A. 245, 26-36. DOI= doi:10.1016/j.molcata.2005.08.051
[25] Tao, Z., Yang, Y., Zhang, C., et al. 2006. Effect of calcium promoter on a precipitated iron–manganese catalyst for Fischer–Tropsch synthesis. Catalysis Commun. 7, 1061- 1066. DOI=doi:10.1016/j.catcom.2006.05.009.
[26] Yang, Y., Xiang, H.W., Xu, Y.Y., et al. 2004. Effect of Potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Catal A G. 266,181-194. DOI= doi:10.1016/j.apcata.2004.02.018.
[27] Mansouri, M., Atashi, H., Farshchi Tabrizi, F., et al. 2013. Kinetics studies of nano-structured cobalt– manganese oxide catalysts in Fischer–Tropsch synthesis. J Ind Eng Chem, 19, 1177-1183. DOI=10.1016/j.jiec.2012.12.015.
[28] Soong, Y., Rao, V.U.S., Gormley, R.J. 1991. Temperature-programmed desorption study on manganeseiron catalysts. Appl Catal. 78, 97-108. DOI= 10.1016/0166-9834(91)80091-A.
[29] Kreitman, K.M., Baerns, M., Butt, J.B. 1987. Manganeseoxide-supported iron Fischer-Tropsch synthesis catalysts: Physical and catalytic characterization. J Catal. 105, 319-334. DOI= 10.1016/0021-9517(87)90061-3.
[30] Yang, Y., Xiang, H., Zhang, R., et al. 2005. A highly active and stable Fe-Mn catalyst for slurry Fischer– Tropsch synthesis. catal Today . 106, 170-175. DOI=10.1016/j.cattod.2005.07.127
[31] Yang, Y., Xiang, H.W., Tian, L, et al. 2005. Structure and Fischer–Tropsch performance of iron–manganese catalyst incorporated with SiO2. Appl Catal A G, 284, 105-122. DOI= doi:10.1016/j.apcata.2005.01.025.
[32] Herranz, T., Rojas, S., Perez-Alonso, F.J, et al. 2006. Hydrogenation of carbon oxides over promoted Fe–Mn catalysts prepared by the micro emulsion methodology.Appl Catal A G. 311, 66-75. DOI=doi:10.1016/j.apcata.2006.06.007.
[33] Zhang, C.H., Yang, Y., Tang, B.T., et al. 2006. Study of an iron- manganese Fischer–Tropsch synthesis catalyst promoted with copper. J Catal. 237, 405-415. DOI=doi:10.1016/j.jcat.2005.11.004.
[34] Rados, N., Al-dahhan, M.H., Dudukovic, M.P. 2003. Modeling of the Fischer–Tropsch synthesis in slurry bubble column reactors. Catal Today. 79–80, 211-218. DOI= doi: 10.1016/S0920-5861(03)00007-5.
[35] Sharma, B.K., Sharmaa, M.P., Kumar, Roya S., et al.1998. Fischer–Tropsch synthesis with Co/SiO2–Al2O3 catalyst and steady-state modeling using artificial neural networks. Fuel 77, 1763-1768. DOI= doi: 10.1016/S0016- 2361(98)00110-0.
[36] Myshkin, N.K., Kwon OK., Grigoriev, A.Y, et al. 1997.Classification of wear debris using a neural network. Wear. 203-204, 658-662. DOI= doi: 10.1016/S0043-1648(96)07432- 7.
[37] Schooling, J.M., Brown, M., Reed, P.A.S. 1999. An example of the use of neural computing techniques in materials science—the modelling of fatigue thresholds in Ni-base super alloys. Sci Eng A. 260, 222-239.
[38] Renno, C., Petito, F., Gatto, A. 2015. Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system. Energy Convers Manage. 106, 999–1012 DOI= doi:10.1016/j.enconman.2015.10.033.
[39] Mikulandric, R., Loncar, D., Böhning, D., et al. 2014. Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energy Convers Manage. 87, 1210–1223. DOI=doi:10.1016/j.enconman.2014.03.036.
[40] Yuhong, Z., Wenxin, H. 2009. Application of artificial neural network to predict the friction factor of open channel flow. Nonlinear Sci Numer Simulat, 14, 2373-2378.
[41] Adib H, Haghbakhsh R, Saidi M, et al. 2013. Modeling and optimization of FischereTropsch synthesis in the presence of (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm. J nat Gas Sci Eng. 10, 14- 24.DOI= doi:10.1016/j.jngse.2012.09.001.
[42] Tu, Y.L., Chang, T.J., Hsieh, C.I, et al. 2010. Artificial neural networks in the estimation of monthly capacity factors of WECS in Taiwan. Energy Convers Manage, 51, 2938–2946. DOI= doi:10.1016/j.enconman.2010.06.035.
[43] Xie, G.N., Wang, Q.W., Zeng, M, et al. 2007. Heat Transfer analysis for shell-and-tube heat exchangers with Experimental data by artificial neural networks approach. Appl Thermal Eng. 27, 1096-1104. DOI=doi:10.1016/j.applthermaleng.2006.07.036.
[44] Kurt, H., Atik, K., Ozkaymak, M., et al. 2008. Thermal performance parameters estimation of hot box type solar cooker by using artificial neural network. Int J Thermal Sci. 47, 192-200. DOI=doi:10.1016/j.ijthermalsci.2007.02.007.
[45] Wang, Y., Fan, W., Liu, Y., et al. 2008. Modeling of the Fischer–Tropsch synthesis in slurry bubble column reactors. Chem Eng Proc. 47, 222-228. DOI=doi:10.1016/j.cep.2007.02.011
Department of Chemical Engineering Faculty of Engineering, University of Sistan and Baluchestan, P.O.Box 98164-161, Zahedan,Iran.
No. of Downloads: 10 | No. of Views: 916
Umeuzuegbu J.C..
July 2021 - Vol 8, Issue 4
Umeezuegbu J.C..
May 2021 - Vol 8, Issue 3
A. C. Nascimento , J. V. Moreira .
September 2015 - Vol 2, Issue 5