Volume- 2
Issue- 5
Year- 2015
Article Tools: Print the Abstract | Indexing metadata | How to cite item | Email this article | Post a Comment
Ahsène Lanani
During the study of longitudinal data or repeated measures, we are often concerned with the choice of a good mathematical or statistical model to approach reality. In this paper, we present different models. Our goal is the choice of the suitable ones.
[1] Andrew, G. and Jeniffer, H. 2006.Data analysis using regression and multilevel hierarchical models. Cambridge University Press.
[2] Bonneu, M. and Leconte, E. Modèle linéaire. Poly. Cours Stat. Eco. www.info.univ-angers.fr.
[3] Chi E.M. and Reinsel G.C. 1989. Models for longitudinal data with random effects and AR(1) errors. J. Amer. Stat. Assoc. 84, 52-59.
[4] Chouquet, C. 2006. Modèles linéaires. Labo. Stat. Proba. U. P. Sabatier Toulouse.
[5] Crowder M. 1995.On the use of a working matrix correlation in using GLM for repeated measures. Biometrika 82, 407-410.
[6] Crowder, M. 2001.On repeated measures analysis with misspecified covariance structure. J. Roy. Stat. Soc., Series B 63, 55-62.
[7] Dempster, A.P., Laird, N.M. and Rubin, D.B. 1977.Maximum likelihood with incomplete data via the E-M algorithm. J. Roy. Stat. Soc., Series B 39, 1-38.
[8] Droesbeke, J.J., Fichet, B. and Tassi, Ph. 1989. Analyse statistique de durée de vie. Modélisation de données censures. Economica.
[9] Efron, B. and Gong, G.A. 1983.A leisurely look at the bootstrap, the jacknife and cross-validation. Amer. Stat. 37, 170- 174.
[10] Fitzmaurice, G.M. and Laird, N.M. 1993. A likelihood based method for analysing longitudinal binary responses. Biometrika 80, 141-51.
[11] Fitzmaurice, G.M., Laird, N.M. and Ware J.H. 2004.Applied longitudinal data. J. Wliley & sons. pp 326-328.
[12] Hall, B. and Severini, T. 1998.Extended Generalized Estimating Equations for clustered data. J. Amer. Stat. Assoc. 93, 1365-1374.
[13] Harville, D.A. 1977. Maximum likelihood approaches to variance components estimation and to related problem. J. Amer. Stat. Assoc. 72, 320-329.
[14] Hu, M. and Lachin, J.M. 2001.Application robust estimating equations to the analysis of quantitative longitudinal data. Stat. in Med. 20, 3411-3428.
[15] Jennrich, R.I. and Scluchter, M.D. 1986.Unbalanced Repeated-Measures Models with Structured Covariance Matrices. Biometrics 42, 805-820.
[16] Laird, N.M and Ware, J.H. 1982. Random effect models for longitudinal data. Biometrics 38, 963-974.
[17] Laird, N.M., Lange, N. and Stram, D. 1987. Maximum likelihood computations with repeated measures: application of the E-M algorithm. J. Amer. Stat. Assoc. 82, 97-105.
[18] Liang, K.Y. and Zeger, S.L. 1986.Longitudinal data analysis using GLM. Biometrika 73, 13-22.
[19] Liang, K.Y., Zeger, S. L. and Qaquish, B. 1992.Multivariate regression analysis for categorial data. J. Roy. Stat. Soc., B 54, 3- 40.
[20] Lindsey, J.K. and Lambert, P. 1998.On the appropriateness of marginal models for Repeated Measurements in Clinical Trials. Stat. in Med.17, 447-469.
[21] Lindstrom, M.J. and Bates, D.M. 1988. Newton-Raphson and E-M algorithm for linear mixed effect models for repeated - measures data. J. Amer. Stat. Assoc. 83, 1014-1022.
[22] Littell, R.C., Milliken, G.A.,Stroup, W.W. and Wolfinger, R.D. 1996.System for mixed models. SAS institute inc: Cary,N.C.
[23] Littell, R.C., Pendergast, J. and Natarajan, R. 2000.Modelling covariance Structure in the analysis of repeated measures data. Stat. in Med. 19, 1793-1819.
[24] Lipsitz, S.R., Laird, N.M. and Harrington, D.P. 1991. Generalized estimating equations for correlated binary data: using odds ratio as a measure of association. Biometrika 78, 153-160.
[25] McCullagh, P. and Nelder, J.A. 1989.Generalized linear model.2nd edition. London: Chapman and Hall.
[26] Nelder, J.A. and Pregibon, D. 1987.An extended quasilikelihood function. Biometrika 74, 221-232.
[27] Park, T. 1993. A comparaison of the GEE approach with the maximum likelihood approach for repeated measurements. Stat. in Med. 12, 1723-1732.
[28] Park, T. and Shin, D-Y. 1999. On the use of working correlation matrices in the GEE approach for longitudinal data. Commun. in Stat.-Simul. 28, 1011-1029.
[29] Prentice, R.L. 1988.Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033-1048.
[30] Prentice, R.L. and Zhao, L.P. 1991.Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics 47, 825-839.
[31] Verbeke, G. and Molenberghs, G. 2000. Linear Mixed Models for longitudinal data. New York: Springer.
[32] Wedderburn, R.W.M. 1974.Quasi-likelihood function; GLM and the Gauss- Newton method. Biometrika 61, 439-447.
[33] Zhao, L.P. and Prentice, R.L. 1990.Correlated binary regression using a quadratic exponential model. Biometrika 77, 642-648.
[34] Zeger, S.L and Liang, K.Y. 1992.An overview of methods for the analysis of longitudinal data. Stat. in Med. 11, 1825-1839.
[35] Zerbe, G.O. 1979. Randomization Analysis of Growth Curves. J. Amer. Stat. Assoc. 74, 215-221.
Department of Mathematics. Faculty of Exact Sciences. University Freres Mentouri. Constantine 25000 Algeria
No. of Downloads: 6 | No. of Views: 848
Dr. Vipin Solanki.
November 2021 - Vol 8, Issue 6
Dr. Vipin Solanki.
November 2021 - Vol 8, Issue 6
Dr. R.Varadharajan, .
July 2017 - Vol 4, Issue 4